The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis...The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.展开更多
With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inr...With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.展开更多
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (No.2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2008135)by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No.SKLGDUEK0905)
文摘The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.
基金financial support from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(No.jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(No.YC2020-S451)。
文摘With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.