For a self-similar set E satisfying the open set condition,upper convex density is an important concept for the computation of its Hausdorff measure,and it is well known that the set of relative interior points with u...For a self-similar set E satisfying the open set condition,upper convex density is an important concept for the computation of its Hausdorff measure,and it is well known that the set of relative interior points with upper convex density 1 has a full Hausdorff measure.But whether the upper convex densities of E at all the relative interior points are equal to 1? In other words,whether there exists a relative interior point of E such that the upper convex density of E at this point is less than 1? In this paper,the authors construct a self-similar set satisfying the open set condition,which has a relative interior point with upper convex density less than 1.Thereby,the above problem is sufficiently answered.展开更多
Let E be a self-similar set satisfying the open set condition. Professor Xu conjectures in his doctoral degree thesis that if H^8(E) 〈|E|^8, then for any x ∈ E, the inequality ^-D^3C(E,x)〉H^8(E)/|E|^8hold...Let E be a self-similar set satisfying the open set condition. Professor Xu conjectures in his doctoral degree thesis that if H^8(E) 〈|E|^8, then for any x ∈ E, the inequality ^-D^3C(E,x)〉H^8(E)/|E|^8holds, where 3 = dimH(E). The above conjecture is negatively answered in this'paper.展开更多
In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets a...In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.展开更多
Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we ...Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.展开更多
In this paper, we address the problem of exact computation of the Hausdorff measure of a class of Sierpinski carpets E- the self-similar sets generating in a unit regular pentagon on the plane. Under some conditions, ...In this paper, we address the problem of exact computation of the Hausdorff measure of a class of Sierpinski carpets E- the self-similar sets generating in a unit regular pentagon on the plane. Under some conditions, we show the natural covering is the best one, and the Hausdorff measures of those sets are euqal to |E|^S, where s = dimHE.展开更多
In this paper, an equivalent condition for the self similar sets on the real line to have best coverings is given. As a result, it partly gives answer to the conjecture which was posed by Zhou and Feng [Zhou, Z. L., F...In this paper, an equivalent condition for the self similar sets on the real line to have best coverings is given. As a result, it partly gives answer to the conjecture which was posed by Zhou and Feng [Zhou, Z. L., Feng, L.: Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: A brief survey of recent results. Nonlinearity, 17(2), 493-502 (2004)].展开更多
基金The Natural Science Youth Foundation (2008GQS0071) of Jiangxi Province
文摘For a self-similar set E satisfying the open set condition,upper convex density is an important concept for the computation of its Hausdorff measure,and it is well known that the set of relative interior points with upper convex density 1 has a full Hausdorff measure.But whether the upper convex densities of E at all the relative interior points are equal to 1? In other words,whether there exists a relative interior point of E such that the upper convex density of E at this point is less than 1? In this paper,the authors construct a self-similar set satisfying the open set condition,which has a relative interior point with upper convex density less than 1.Thereby,the above problem is sufficiently answered.
文摘Let E be a self-similar set satisfying the open set condition. Professor Xu conjectures in his doctoral degree thesis that if H^8(E) 〈|E|^8, then for any x ∈ E, the inequality ^-D^3C(E,x)〉H^8(E)/|E|^8holds, where 3 = dimH(E). The above conjecture is negatively answered in this'paper.
基金partially supported by the foundation of the research item of Strong Department of Engineering Innovation, which is sponsored by the Strong School of Engineering Innovation of Hanshan Normal University, China, 2013partially supported by National Natural Science Foundation of China (No. 11371379)
文摘In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.
基金part by the Foundations of the Jiangxi Natural Science Committee(No:0611005),China.
文摘Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.
基金Partially supported by National Natural Science Foundation of China (No.10961003)
文摘In this paper, we address the problem of exact computation of the Hausdorff measure of a class of Sierpinski carpets E- the self-similar sets generating in a unit regular pentagon on the plane. Under some conditions, we show the natural covering is the best one, and the Hausdorff measures of those sets are euqal to |E|^S, where s = dimHE.
基金Supported by National Natural Science Foundations of China (Grant Nos. 10971236, 11261039)
文摘In this paper, an equivalent condition for the self similar sets on the real line to have best coverings is given. As a result, it partly gives answer to the conjecture which was posed by Zhou and Feng [Zhou, Z. L., Feng, L.: Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: A brief survey of recent results. Nonlinearity, 17(2), 493-502 (2004)].