A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integr...A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integral as a function of the upper limit in this paper.展开更多
Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor o...Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor on compact Hausdorff space. It is proved in this note that this functor preserves inverse limits.展开更多
The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an...The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.展开更多
This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary...This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.展开更多
The concepts of the lower approximation integral,the upper approximation integral and rough integrals are given on the basis of function rough sets.Based on these concepts,the relation of the lower approximation integ...The concepts of the lower approximation integral,the upper approximation integral and rough integrals are given on the basis of function rough sets.Based on these concepts,the relation of the lower approximation integrals,the relation of the upper approximation integrals,the relation of rough integrals,and the double median theorem of rough integrals are discussed.Rough integrals have finite contraction characteristic and finite extension characteristic.展开更多
In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the co...In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the corresponding results for Marcinkiewicz integral and its fractional version with kernels satisfying L_α~q-Dini condition are also given.展开更多
In this paper we consider a class of polynomial planar system with two small parameters,ε and λ,satisfying 0<ε《λ《1.The corresponding first order Melnikov function M_(1) with respect to ε depends on λ so tha...In this paper we consider a class of polynomial planar system with two small parameters,ε and λ,satisfying 0<ε《λ《1.The corresponding first order Melnikov function M_(1) with respect to ε depends on λ so that it has an expansion of the form M_(1)(h,λ)=∑k=0∞M_(1k)(h)λ^(k).Assume that M_(1k')(h) is the first non-zero coefficient in the expansion.Then by estimating the number of zeros of M_(1k')(h),we give a lower bound of the maximal number of limit cycles emerging from the period annulus of the unperturbed system for 0<ε《λ《1,when k'=0 or 1.In addition,for each k∈N,an upper bound of the maximal number of zeros of M_(1k)(h),taking into account their multiplicities,is presented.展开更多
讨论了收敛的无穷限积分integral from n=a to +∞ (f(x)dx)中被积函数limx→+∞f(x)=0的充分条件以及在一些条件下limf(x)=0的速度,得到了如下结果:若无穷限积分integral from n=a to +∞ (f(x)dx)收敛且极限limx→+∞f(x)存在,则limx...讨论了收敛的无穷限积分integral from n=a to +∞ (f(x)dx)中被积函数limx→+∞f(x)=0的充分条件以及在一些条件下limf(x)=0的速度,得到了如下结果:若无穷限积分integral from n=a to +∞ (f(x)dx)收敛且极限limx→+∞f(x)存在,则limx→+∞f(x)=0;若无穷限积分integral from n=a to +∞ (f(x)dx)收敛,且f(x)在[a,+∞)上一致连续,则limx→+∞f(x)=0;若无穷限积分∫+∞af(x)dx收敛且f(x)在[a,+∞)上单调,则limx→+∞xf(x)=0,即f(x)=o1(x),x→+∞;若无穷限积分integral from n=a to +∞ (f(x)dx)收敛(p>0),且f(x)在[a,+∞)上单调,则limxp+1 f(x)=0。展开更多
We investigate integral-type functionals of the first hitting times for continuous-time Markov chains. Recursive formulas and drift conditions for calculating or bounding integral-type functionals are obtained. The co...We investigate integral-type functionals of the first hitting times for continuous-time Markov chains. Recursive formulas and drift conditions for calculating or bounding integral-type functionals are obtained. The connection between the subexponential integral-type functionals and the subexponential ergodicity is established. Moreover, these results are applied to the birth-death processes. Polynomial integral-type functionals and polynomial ergodicity are studied, and a sufficient criterion for a central limit theorem is also presented.展开更多
In this paper, we study the periodic wave propagation phenomenon in elastic waveguides modeled by a combined double-dispersive partial differential equation(PDE).The traveling wave ansazt transforms the PDE model into...In this paper, we study the periodic wave propagation phenomenon in elastic waveguides modeled by a combined double-dispersive partial differential equation(PDE).The traveling wave ansazt transforms the PDE model into a perturbed integrable ordinary differential equation(ODE). The global bifurcation theory is applied for the perturbed ODE model to establish the existence and uniqueness of the limit cycle, which corresponds the periodic traveling wave for the PDE model. The main tool is the Abelian integral taken from Poincaré bifurcation theory. Simulation is carried out to verify the theoretical result.展开更多
文摘A kinematically admissible velocity field which is different from Avitzur's is established in Cartesian Coordinates. An upper-bound analytical solution to strip drawing andextrusion is obtained by using the integral as a function of the upper limit in this paper.
文摘Given a compact Hausdorff space X, U(X) denotes the compact Hausdorff space of all the upper semicontinuous functions from X to the unit interval with the dual lim inf topology. Then U is an endofunctor on compact Hausdorff space. It is proved in this note that this functor preserves inverse limits.
文摘The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.
文摘This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.
基金Supported by the Natural Science Foundation of Shandong Province(ZR2010AL019) Supported by the Education Science Foundation of Shandong Province(2010JZ123)
文摘The concepts of the lower approximation integral,the upper approximation integral and rough integrals are given on the basis of function rough sets.Based on these concepts,the relation of the lower approximation integrals,the relation of the upper approximation integrals,the relation of rough integrals,and the double median theorem of rough integrals are discussed.Rough integrals have finite contraction characteristic and finite extension characteristic.
文摘In this paper, we establish the following limiting weak-type behaviors of Littlewood-Paley g-function g_φ: for nonnegative function f∈ L^1(R^n),■and ■where f_t(x) =t^(-n)f(t^(-1) x) for t > 0. Meanwhile, the corresponding results for Marcinkiewicz integral and its fractional version with kernels satisfying L_α~q-Dini condition are also given.
基金The first author is supported by the National Natural Science Foundation of China(11671013)the second author is supported by the National Natural Science Foundation of China(11771296).
文摘In this paper we consider a class of polynomial planar system with two small parameters,ε and λ,satisfying 0<ε《λ《1.The corresponding first order Melnikov function M_(1) with respect to ε depends on λ so that it has an expansion of the form M_(1)(h,λ)=∑k=0∞M_(1k)(h)λ^(k).Assume that M_(1k')(h) is the first non-zero coefficient in the expansion.Then by estimating the number of zeros of M_(1k')(h),we give a lower bound of the maximal number of limit cycles emerging from the period annulus of the unperturbed system for 0<ε《λ《1,when k'=0 or 1.In addition,for each k∈N,an upper bound of the maximal number of zeros of M_(1k)(h),taking into account their multiplicities,is presented.
文摘讨论了收敛的无穷限积分integral from n=a to +∞ (f(x)dx)中被积函数limx→+∞f(x)=0的充分条件以及在一些条件下limf(x)=0的速度,得到了如下结果:若无穷限积分integral from n=a to +∞ (f(x)dx)收敛且极限limx→+∞f(x)存在,则limx→+∞f(x)=0;若无穷限积分integral from n=a to +∞ (f(x)dx)收敛,且f(x)在[a,+∞)上一致连续,则limx→+∞f(x)=0;若无穷限积分∫+∞af(x)dx收敛且f(x)在[a,+∞)上单调,则limx→+∞xf(x)=0,即f(x)=o1(x),x→+∞;若无穷限积分integral from n=a to +∞ (f(x)dx)收敛(p>0),且f(x)在[a,+∞)上单调,则limxp+1 f(x)=0。
基金Acknowledgements The authors would like to thank Professor Yong-Hua Mao for useful discussion. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11571372, 11501576, 11771452) and the Excellent Young Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15B252).
文摘We investigate integral-type functionals of the first hitting times for continuous-time Markov chains. Recursive formulas and drift conditions for calculating or bounding integral-type functionals are obtained. The connection between the subexponential integral-type functionals and the subexponential ergodicity is established. Moreover, these results are applied to the birth-death processes. Polynomial integral-type functionals and polynomial ergodicity are studied, and a sufficient criterion for a central limit theorem is also presented.
基金Supported by the National Natural Science Foundation of China(Grant No.12061016)the Applied Mathematics Center of GuangxiFoundation of Guangxi Technological College of Machinery and Electrcity(Grant No.2021YKYZ010).
文摘In this paper, we study the periodic wave propagation phenomenon in elastic waveguides modeled by a combined double-dispersive partial differential equation(PDE).The traveling wave ansazt transforms the PDE model into a perturbed integrable ordinary differential equation(ODE). The global bifurcation theory is applied for the perturbed ODE model to establish the existence and uniqueness of the limit cycle, which corresponds the periodic traveling wave for the PDE model. The main tool is the Abelian integral taken from Poincaré bifurcation theory. Simulation is carried out to verify the theoretical result.