Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and cor...Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and core samples,the deposition and development conditions and characteristics of marine shale are revealed,the geochemical and reservoir characteristics of marine shale are evaluated,and the layers of marine shale oil in the Mesozoic are determined.The following geological understandings are obtained.First,there are two sets of marine organic-rich shales,the Lower Jurassic Quse Formation and the Upper Triassic Bagong Formation,in the Qiangtang Basin.They are mainly composed of laminated shale with massive mudstone.The laminated organic-rich shale of the Quse Formation is located in the lower part of the stratum,with a thickness of 50–75 m,and mainly distributed in southern Qiangtang Basin and the central-west of northern Qiangtang Basin.The laminated organic-rich shale of the Bagong Formation is located in the middle of the stratum,with a thickness of 250–350 m,and distributed in both northern and southern Qiangtang Basin.Second,the two sets of laminated organic-rich shales develop foliation,and various types of micropores and microfractures.The average content of brittle minerals is 70%,implying a high fracturability.The average porosity is 5.89%,indicating good reservoir physical properties to the level of moderate–good shale oil reservoirs.Third,the organic-rich shale of the Quse Formation contains organic matters of types II1 and II2,with the average TOC of 8.34%,the average content of chloroform bitumen'A'of 0.66%,the average residual hydrocarbon generation potential(S1+S2)of 29.93 mg/g,and the Ro value of 0.9%–1.3%,meeting the standard of high-quality source rock.The organic-rich shale of the Bagong Formation contains mixed organic matters,with the TOC of 0.65%–3.10%and the Ro value of 1.17%–1.59%,meeting the standard of moderate source rock.Fourth,four shallow wells(depth of 50–250 m)with oil shows have been found in the organic shales at 50–90 m in the lower part of the Bagong Formation and 30–75 m in the middle part of the Quse Formation.The crude oil contains a high content of saturated hydrocarbon.Analysis and testing of outcrop and shallow well samples confirm the presence of marine shale oil in the Bagong Formation and the Quse Formation.Good shale oil intervals in the Bagong Formation are observed in layers 18–20 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 206.7 m thick,with the maximum and average(S0+S1)of 1.92 mg/g and 1.81 mg/g,respectively.Good shale oil intervals in the Quse Formation are found in layers 4–8 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 58.8 m thick,with the maximum and average(S0+S1)of 6.46 mg/g and 2.23 mg/g,respectively.展开更多
Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,d...Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.展开更多
A new stegosaur species, Jiangjunosaurusjunggarensis, gen. et sp. nov., is erected based on a specimen collected from the Upper Jurassic upper section of the Shishugou Formation in the Junggar Basin, Xinjiang, China. ...A new stegosaur species, Jiangjunosaurusjunggarensis, gen. et sp. nov., is erected based on a specimen collected from the Upper Jurassic upper section of the Shishugou Formation in the Junggar Basin, Xinjiang, China. It represents the first stegosaur from the Jurassic of Xinjiang and increases the diversity of the dinosaur fauna in the Shishugou Formation. The new genus is characterized by symmetrical and proportionally wide tooth crowns, a sub-rectangular axial neural spine seen in lateral view, and large openings on the lateral surfaces of the cervical centra. A preliminary character analysis suggests that this new taxon is more derived than the Middle Jurassic stegosaur Huayangosaurus but more primitive than most other known stegosaur species.展开更多
The Wangchengpo Frasnian section of Dushan County contains two atrypid brachiopod assemblages. The lower is characterized by the Atryparia (Costatrypa) dushanensis fauna that appears at the base of the Hejiazhai Mem...The Wangchengpo Frasnian section of Dushan County contains two atrypid brachiopod assemblages. The lower is characterized by the Atryparia (Costatrypa) dushanensis fauna that appears at the base of the Hejiazhai Member approximately in the falsiovalis to transitans conodont zones: the upper is characterized by the Radiatrypa yangi fauna, which appears in the Lujiazhai Member approximately correspondent with the hassi to Upper rhenana conodont zones. Atrypid brachiopods, together with other brachiopods from the Dushan section show that the Hejiazhai Member is of Frasnian age. Preliminary analyses of Frasnian atrypid brachiopods from sections of South China indicate that there are nine genera and subgenera including Atryparia (Costatrypa), Kyrtatrypa, Spinatrypa, lsospinatrypa, Spinatrypina, lowatrypa, Desquamatia (Desquamatia). Desquamatia (Seratrypa), and Radiatr)pa. Atrypid species diversity did not change much through the Frasnian. On a regional scale in South China, most atrypid species went extinct prior to the Frasnian/Famennian boundary. At any specific locality or section, these atrypids became extinct about 20-40 m below the Frasnian/Famennian (F/F) boundary, within the linguiformis conodont Zone, marking this as the major extinction level. Three new atrypid species are described: Atryparia (Costatrypa) dushanensis, lowatrypa pseudobodini, and Radiatrypa yangi.展开更多
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec...The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.展开更多
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo...The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.展开更多
The Sinian Doushantuo Formation is the oldest shale gas reservoir discovered in the world, which contains good shale gas shows as the Eyangye-1 and Zidi-1 wells in the Yichang Region of western Hubei province, China. ...The Sinian Doushantuo Formation is the oldest shale gas reservoir discovered in the world, which contains good shale gas shows as the Eyangye-1 and Zidi-1 wells in the Yichang Region of western Hubei province, China. The shales in the Doushantuo Formation feature considerable thickness (135 m), high gas content (4.83 m^3/t) and high fragile mineral content (up to 75%). Due to the influences of the sedimentary environment, the shale reservoirs here have high dolomitic content (54%) and abruptly changes in vertical lithofacies. Moreover, the characteristics of the shale sweet-spot differ significantly from that in the Wufeng Formation and Longmaxi Formation in southeast Sichuan Basin. A high-resolution sequence stratigraphic correlation was performed on the shales of the Doushantuo Formation at the Eyangye-1 well, Zidi-1 well, Zidi-2 well and some outcrop profiles in Yichang area for the identification of their sedimentary microfacies characteristics. A comprehensive comparative analysis was made by incorporating the elemental geochemistry, wireline and mud logging data of the well to further identify the sweet-spot interval therein. With the analysis of Eyangye-1 well, the sweet-spot interval of the Doushantuo Formation is 3360?3408 m, of which sedimentary microfacies is deepwater reduced environment with many pyrite laminaes, and the TOC is high to 3.42%, the Ro is 3.3%, the organic and matrix pore are well developed and the aperture more than 50 nm, the porosity is 2.7%, the desorption gas content average is 2.16%, and the main mineral is dolomitic (54%) and siliceous quartz (21%). Additionally, these parameters combined with previous studies will shed light on evaluating and characterizing the layers therein, also provide referential geological data for the following exploration and development activities of this shale system.展开更多
Most relatively high-level radioactive sandstone(HRSS)reservoir has considerable oil(or gas)resource potential.HRSS is often wrongly identified due to its similar logging response characteristics as mudstone,which lea...Most relatively high-level radioactive sandstone(HRSS)reservoir has considerable oil(or gas)resource potential.HRSS is often wrongly identified due to its similar logging response characteristics as mudstone,which leads to the omission of effective reservoirs.In this paper,a quantitative identification method for HRSS is proposed after the analyzing of the response characteristics and relationship between spontaneous potential log and natural gamma-ray log in conventional sandstone and mudstone strata.Take the Upper Triassic Yanchang Formation in Ordos Basin as an example:the responses of spontaneous potential log and the responses of natural gamma-ray log are synchronized and positively correlated in conventional sandstone and mudstone strata,but they are not synchronized in HRSS.Quantitative identification of HRSS was realized based on this synchronization feature,and a"virtual compensation"of natural gamma-ray log was performed.At the same time,logging evaluation method about HRSS has been discussed.The final results shows that this identification method work effectively,and can reduce the misjudgment and omission of effective reservoirs.展开更多
The Upper Devonian Buchan Formation reservoirs in the UK Central North Sea are litharenite/sublitharenite and were deposited in fluvial-aeolian settings. The grain-coating clays in the aeolian sandstones have effectiv...The Upper Devonian Buchan Formation reservoirs in the UK Central North Sea are litharenite/sublitharenite and were deposited in fluvial-aeolian settings. The grain-coating clays in the aeolian sandstones have effectively inhibited quartz overgrowth. Hence, the reduction of reservoir quality is mainly due to mechanical compaction and early dolomite pre- cipitation in both fluvial and aeolian sandstones; quartz overgrowth and kaolinite illitization in fluvial sandstones; and limited smectite illitization in aeolian sandstones. The carbon/oxygen stable isotopes of dolomite cements suggest a predominantly marine carbon source and precipitation temperatures between 25 and 58 ~C indicating a shallow burial depth during dolomite precipitation. The temperatures and the dolomite distribution indicate that the cements originated from the overlying Upper Permian Zechstein carbonates. Extensive quartz overgrowths formed at 80 and 120 ~C in the late and deep diagenetic burial history. The most probable silica source was from feldspar kaolinitization and pressure dissolution of quartz grains. Through detailed petrography and geochemical analyses, the burial-paragenesis-thermal history of the Buchan Formation has been constructed. Similar diagenetic processes are likely to have occurred in the Buchan Formation in other parts of the Central and Northern North Sea. This study may allow new petroleum plays to be considered in areas previously thought to have poor hydrocarbon potential.展开更多
The macro- and microscopic results were that this body of basalt tectonically heavily loaded, strongly altered by clay minerals and characterized by hydro-metasomatic alteration. The geochemical analyzes revealed that...The macro- and microscopic results were that this body of basalt tectonically heavily loaded, strongly altered by clay minerals and characterized by hydro-metasomatic alteration. The geochemical analyzes revealed that the original magma could be a mantle origin of high iron and magnesium containing basalt (tholeiites, 10%-15%). As regards to the palaeogeographic environment, it can be said that due to the periodic sea flooding, it pushed into a lower area, covered with sediment where the surrounding areas were highlighted (biikkszentkereszt and bukkszentlaszl6 tufts).展开更多
The genus Beipiaoserphus gen. nov. is established and referred to Mesoserphidae with Beipiaoserphus elegans sp. nov. as its type species. The type specimens were collected from the lower part of the Upper Jura...The genus Beipiaoserphus gen. nov. is established and referred to Mesoserphidae with Beipiaoserphus elegans sp. nov. as its type species. The type specimens were collected from the lower part of the Upper Jurassic Yixian Formation at Huangbanjigou Village near Shangyuan Town, Beipiao, Liaoning Province, China and are housed at Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing.展开更多
Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including z...Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification. Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5% increase in porosity. No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata, which would indicate that HTD mineralization occurred during two different periods, each of them related to major extensional tectonic event. The early one related to the Xingkai taphrogenesis (Z2-C1) and the later one to the Emei taphrogenesis (D2-T2). But, all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event.展开更多
Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has b...Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.展开更多
To reveal the law of oiliness of the Upper Cretaceous carbonate reservoirs in the Middle East and factors controlling the oiliness, the Mishrif Formation of the H oilfield in Iraq was examined comprehensively. Based o...To reveal the law of oiliness of the Upper Cretaceous carbonate reservoirs in the Middle East and factors controlling the oiliness, the Mishrif Formation of the H oilfield in Iraq was examined comprehensively. Based on core observation and description, casting thin section analysis, and statistics of physical property and pore-throat structure parameter, etc., in combination with previous achievements and understanding, it is pointed out that the coring interval of Mishrif Formation has strong oiliness heterogeneity, and can be divided into 4 grades, oil rich, oil immersed, oil spot, and oil trace; the oil-bearing grade has obvious facies-controlled characteristic in macroscopic view; and in different oil-bearing grades, relatively oil-rich sections present higher karst development intensity, better physical properties and pore-throat structure characteristics. It is concluded through the study that the sedimentary microenvironment and eogenetic karstification determine the macroscopic oiliness of the reservoir in Mishrif Formation of H Oilfield, and the improvement of pore-throat structure caused by eogenetic karstification is the decisive factor of the micro oil-bearing difference of the reservoir. Finally,the genetic model of reservoir development and oil-bearing difference was established.展开更多
Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and res...Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.展开更多
The diverse clam shrimp Nestoria-Keratestheria fauna is widely distributed in the Dabeigou Formation in northern Hebei and eastern Inner Mongolia of China. Its important component genus Magumbonia from the Dabeigou Fo...The diverse clam shrimp Nestoria-Keratestheria fauna is widely distributed in the Dabeigou Formation in northern Hebei and eastern Inner Mongolia of China. Its important component genus Magumbonia from the Dabeigou Formation in the Luanping Basin, northern Hebei, China, is revised on the basis of a scanning electron microscope (SEM) examination of the type species M.jingshangensis Wang, 1984, which revealed morphological features not recognized previously. These include coarse reticulation on the umbo and prominent growth lines ornamented with densely spaced, small tubercles and fine lirae.展开更多
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金Supported by the PetroChina Science and Technology Major Project(2021DJ08)National Natural Science Foundation of China(42241203).
文摘Mesozoic marine shale oil was found in the Qiangtang Basin by a large number of hydrocarbon geological surveys and shallow drilling sampling.Based on systematic observation and experimental analysis of outcrop and core samples,the deposition and development conditions and characteristics of marine shale are revealed,the geochemical and reservoir characteristics of marine shale are evaluated,and the layers of marine shale oil in the Mesozoic are determined.The following geological understandings are obtained.First,there are two sets of marine organic-rich shales,the Lower Jurassic Quse Formation and the Upper Triassic Bagong Formation,in the Qiangtang Basin.They are mainly composed of laminated shale with massive mudstone.The laminated organic-rich shale of the Quse Formation is located in the lower part of the stratum,with a thickness of 50–75 m,and mainly distributed in southern Qiangtang Basin and the central-west of northern Qiangtang Basin.The laminated organic-rich shale of the Bagong Formation is located in the middle of the stratum,with a thickness of 250–350 m,and distributed in both northern and southern Qiangtang Basin.Second,the two sets of laminated organic-rich shales develop foliation,and various types of micropores and microfractures.The average content of brittle minerals is 70%,implying a high fracturability.The average porosity is 5.89%,indicating good reservoir physical properties to the level of moderate–good shale oil reservoirs.Third,the organic-rich shale of the Quse Formation contains organic matters of types II1 and II2,with the average TOC of 8.34%,the average content of chloroform bitumen'A'of 0.66%,the average residual hydrocarbon generation potential(S1+S2)of 29.93 mg/g,and the Ro value of 0.9%–1.3%,meeting the standard of high-quality source rock.The organic-rich shale of the Bagong Formation contains mixed organic matters,with the TOC of 0.65%–3.10%and the Ro value of 1.17%–1.59%,meeting the standard of moderate source rock.Fourth,four shallow wells(depth of 50–250 m)with oil shows have been found in the organic shales at 50–90 m in the lower part of the Bagong Formation and 30–75 m in the middle part of the Quse Formation.The crude oil contains a high content of saturated hydrocarbon.Analysis and testing of outcrop and shallow well samples confirm the presence of marine shale oil in the Bagong Formation and the Quse Formation.Good shale oil intervals in the Bagong Formation are observed in layers 18–20 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 206.7 m thick,with the maximum and average(S0+S1)of 1.92 mg/g and 1.81 mg/g,respectively.Good shale oil intervals in the Quse Formation are found in layers 4–8 in the lower part of the section,where the shales with(S0+S1)higher than 1 mg/g are 58.8 m thick,with the maximum and average(S0+S1)of 6.46 mg/g and 2.23 mg/g,respectively.
文摘Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.
基金This work was supported by the National Natural Science Foundation of China;the U. S. National Science Foundation (EAR);the National Geographic Society;the Jurassic Foundation, the Hilmar Sallee bequest, George Washington University;the Chinese Academy of Sciences.
文摘A new stegosaur species, Jiangjunosaurusjunggarensis, gen. et sp. nov., is erected based on a specimen collected from the Upper Jurassic upper section of the Shishugou Formation in the Junggar Basin, Xinjiang, China. It represents the first stegosaur from the Jurassic of Xinjiang and increases the diversity of the dinosaur fauna in the Shishugou Formation. The new genus is characterized by symmetrical and proportionally wide tooth crowns, a sub-rectangular axial neural spine seen in lateral view, and large openings on the lateral surfaces of the cervical centra. A preliminary character analysis suggests that this new taxon is more derived than the Middle Jurassic stegosaur Huayangosaurus but more primitive than most other known stegosaur species.
基金Th is work is supported by the Major Basic Research Project(G2000077700)the National Natural Science Foundation of China(Grant No.401 72006,40232019,and 40472009).
文摘The Wangchengpo Frasnian section of Dushan County contains two atrypid brachiopod assemblages. The lower is characterized by the Atryparia (Costatrypa) dushanensis fauna that appears at the base of the Hejiazhai Member approximately in the falsiovalis to transitans conodont zones: the upper is characterized by the Radiatrypa yangi fauna, which appears in the Lujiazhai Member approximately correspondent with the hassi to Upper rhenana conodont zones. Atrypid brachiopods, together with other brachiopods from the Dushan section show that the Hejiazhai Member is of Frasnian age. Preliminary analyses of Frasnian atrypid brachiopods from sections of South China indicate that there are nine genera and subgenera including Atryparia (Costatrypa), Kyrtatrypa, Spinatrypa, lsospinatrypa, Spinatrypina, lowatrypa, Desquamatia (Desquamatia). Desquamatia (Seratrypa), and Radiatr)pa. Atrypid species diversity did not change much through the Frasnian. On a regional scale in South China, most atrypid species went extinct prior to the Frasnian/Famennian boundary. At any specific locality or section, these atrypids became extinct about 20-40 m below the Frasnian/Famennian (F/F) boundary, within the linguiformis conodont Zone, marking this as the major extinction level. Three new atrypid species are described: Atryparia (Costatrypa) dushanensis, lowatrypa pseudobodini, and Radiatrypa yangi.
文摘The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds.
基金supported by the Important National Science&Technology Specific Project (2008ZX05002-004)
文摘The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.
文摘The Sinian Doushantuo Formation is the oldest shale gas reservoir discovered in the world, which contains good shale gas shows as the Eyangye-1 and Zidi-1 wells in the Yichang Region of western Hubei province, China. The shales in the Doushantuo Formation feature considerable thickness (135 m), high gas content (4.83 m^3/t) and high fragile mineral content (up to 75%). Due to the influences of the sedimentary environment, the shale reservoirs here have high dolomitic content (54%) and abruptly changes in vertical lithofacies. Moreover, the characteristics of the shale sweet-spot differ significantly from that in the Wufeng Formation and Longmaxi Formation in southeast Sichuan Basin. A high-resolution sequence stratigraphic correlation was performed on the shales of the Doushantuo Formation at the Eyangye-1 well, Zidi-1 well, Zidi-2 well and some outcrop profiles in Yichang area for the identification of their sedimentary microfacies characteristics. A comprehensive comparative analysis was made by incorporating the elemental geochemistry, wireline and mud logging data of the well to further identify the sweet-spot interval therein. With the analysis of Eyangye-1 well, the sweet-spot interval of the Doushantuo Formation is 3360?3408 m, of which sedimentary microfacies is deepwater reduced environment with many pyrite laminaes, and the TOC is high to 3.42%, the Ro is 3.3%, the organic and matrix pore are well developed and the aperture more than 50 nm, the porosity is 2.7%, the desorption gas content average is 2.16%, and the main mineral is dolomitic (54%) and siliceous quartz (21%). Additionally, these parameters combined with previous studies will shed light on evaluating and characterizing the layers therein, also provide referential geological data for the following exploration and development activities of this shale system.
基金supported by the National "863" program of China(No.2012AA050103)
文摘Most relatively high-level radioactive sandstone(HRSS)reservoir has considerable oil(or gas)resource potential.HRSS is often wrongly identified due to its similar logging response characteristics as mudstone,which leads to the omission of effective reservoirs.In this paper,a quantitative identification method for HRSS is proposed after the analyzing of the response characteristics and relationship between spontaneous potential log and natural gamma-ray log in conventional sandstone and mudstone strata.Take the Upper Triassic Yanchang Formation in Ordos Basin as an example:the responses of spontaneous potential log and the responses of natural gamma-ray log are synchronized and positively correlated in conventional sandstone and mudstone strata,but they are not synchronized in HRSS.Quantitative identification of HRSS was realized based on this synchronization feature,and a"virtual compensation"of natural gamma-ray log was performed.At the same time,logging evaluation method about HRSS has been discussed.The final results shows that this identification method work effectively,and can reduce the misjudgment and omission of effective reservoirs.
基金EnQuest PLC for supporting this research through access to internal data and financial support
文摘The Upper Devonian Buchan Formation reservoirs in the UK Central North Sea are litharenite/sublitharenite and were deposited in fluvial-aeolian settings. The grain-coating clays in the aeolian sandstones have effectively inhibited quartz overgrowth. Hence, the reduction of reservoir quality is mainly due to mechanical compaction and early dolomite pre- cipitation in both fluvial and aeolian sandstones; quartz overgrowth and kaolinite illitization in fluvial sandstones; and limited smectite illitization in aeolian sandstones. The carbon/oxygen stable isotopes of dolomite cements suggest a predominantly marine carbon source and precipitation temperatures between 25 and 58 ~C indicating a shallow burial depth during dolomite precipitation. The temperatures and the dolomite distribution indicate that the cements originated from the overlying Upper Permian Zechstein carbonates. Extensive quartz overgrowths formed at 80 and 120 ~C in the late and deep diagenetic burial history. The most probable silica source was from feldspar kaolinitization and pressure dissolution of quartz grains. Through detailed petrography and geochemical analyses, the burial-paragenesis-thermal history of the Buchan Formation has been constructed. Similar diagenetic processes are likely to have occurred in the Buchan Formation in other parts of the Central and Northern North Sea. This study may allow new petroleum plays to be considered in areas previously thought to have poor hydrocarbon potential.
文摘The macro- and microscopic results were that this body of basalt tectonically heavily loaded, strongly altered by clay minerals and characterized by hydro-metasomatic alteration. The geochemical analyzes revealed that the original magma could be a mantle origin of high iron and magnesium containing basalt (tholeiites, 10%-15%). As regards to the palaeogeographic environment, it can be said that due to the periodic sea flooding, it pushed into a lower area, covered with sediment where the surrounding areas were highlighted (biikkszentkereszt and bukkszentlaszl6 tufts).
基金Supported by the National Natural Science foundation of China (49832 0 2 0 NIGPAS990 50 2 ) and CMBRP(G2 0 0 0 0 7770 0 )
文摘The genus Beipiaoserphus gen. nov. is established and referred to Mesoserphidae with Beipiaoserphus elegans sp. nov. as its type species. The type specimens were collected from the lower part of the Upper Jurassic Yixian Formation at Huangbanjigou Village near Shangyuan Town, Beipiao, Liaoning Province, China and are housed at Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing.
基金funded by National Basic Research Program of China (Grant No. 2012CB214805)
文摘Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian and Cambrian and were generated mainly during karstification. Hydrothermal alteration enhanced the reservoir property of the Dengying Formation dolomites with 3%-5% increase in porosity. No agreement has been reached why zebra dolomite occurs only in the Upper Sinian strata, which would indicate that HTD mineralization occurred during two different periods, each of them related to major extensional tectonic event. The early one related to the Xingkai taphrogenesis (Z2-C1) and the later one to the Emei taphrogenesis (D2-T2). But, all the data from saddle dolomite suggest that the predominant crystallization occurred during the latter event.
基金supported by the National Natural Science Foundation of China(grant No.41202103)
文摘Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.
基金Supported by the China National Science and Technology Major Project(2017ZX05032004-001)
文摘To reveal the law of oiliness of the Upper Cretaceous carbonate reservoirs in the Middle East and factors controlling the oiliness, the Mishrif Formation of the H oilfield in Iraq was examined comprehensively. Based on core observation and description, casting thin section analysis, and statistics of physical property and pore-throat structure parameter, etc., in combination with previous achievements and understanding, it is pointed out that the coring interval of Mishrif Formation has strong oiliness heterogeneity, and can be divided into 4 grades, oil rich, oil immersed, oil spot, and oil trace; the oil-bearing grade has obvious facies-controlled characteristic in macroscopic view; and in different oil-bearing grades, relatively oil-rich sections present higher karst development intensity, better physical properties and pore-throat structure characteristics. It is concluded through the study that the sedimentary microenvironment and eogenetic karstification determine the macroscopic oiliness of the reservoir in Mishrif Formation of H Oilfield, and the improvement of pore-throat structure caused by eogenetic karstification is the decisive factor of the micro oil-bearing difference of the reservoir. Finally,the genetic model of reservoir development and oil-bearing difference was established.
基金Supported by the China National Science and Technology Major Project(2017ZX05035-001)。
文摘Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.
基金supported by the Project of China Geological Survey (No.1212010610421)the Major Basic Research Projects of the Ministry of Science and Technology,China (National 973 Project No.2006CB701403)+3 种基金the National Natural Science Foundation of China (No.40572005,40632010,J0630967)JSPS Fellowship (ID No.L09522)State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing (No.073106,20082103) (SKLPS)The SEM micrographs were taken through the courtesy of the LEO 1530 VP facility of SKLPS.
文摘The diverse clam shrimp Nestoria-Keratestheria fauna is widely distributed in the Dabeigou Formation in northern Hebei and eastern Inner Mongolia of China. Its important component genus Magumbonia from the Dabeigou Formation in the Luanping Basin, northern Hebei, China, is revised on the basis of a scanning electron microscope (SEM) examination of the type species M.jingshangensis Wang, 1984, which revealed morphological features not recognized previously. These include coarse reticulation on the umbo and prominent growth lines ornamented with densely spaced, small tubercles and fine lirae.