期刊文献+
共找到4,506篇文章
< 1 2 226 >
每页显示 20 50 100
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
1
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Dynamic behavior of outburst two-phase flow in a coal mine T-shaped roadway:The formation of impact airflow and its disaster-causing effect
2
作者 Liang Cheng Jiang Xu +4 位作者 Shoujian Peng Hailin Yang Feng Jiao Bin Zhou Fazhi Yan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1001-1017,共17页
The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway... The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity. 展开更多
关键词 Multiphase flow coal and gas outburst Dynamic disaster Impact airflow T-shaped bifurcated roadway coal seam
下载PDF
Evaluation of roof cutting by directionally single cracking technique in automatic roadway formation for thick coal seam mining
3
作者 Yubing Gao Qiukai Gai +2 位作者 Xingxing Zhang Xun Xi Manchao He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期137-157,共21页
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ... Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting. 展开更多
关键词 No pillar mining Automatic roadway formation Directionally single cracking Roof cutting roadway stability-Thick coal seam mining
下载PDF
Analysis on advanced transient EM detectability of coal mine roadway
4
作者 LING Hong LIU Yunhe MA Xinpeng 《Global Geology》 2023年第3期177-188,共12页
The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to ... The hidden water-bearing structures near the roadway tunnelling face are very likely to cause water seepage accidents in coal mines.Currently,transient electromagnetic(EM)technology has be-come an important method to detect water damage in advance of roadway excavation.In this paper,the time-domain finite element algorithm based on unstructured tetrahedron grids is used to accurate-ly simulate the geological body in front of the roadway excavation face and analyze its response.The authors detect the distance between the roadway excavation face and the low-resistivity water-bearing body,the resistivity difference between the low-resistivity body and surrounding rock,and the influence of the size of the low-resistivity body on the transient EM response.Furthermore,the common types of low-resistivity bodies in the roadway drivage process are used for modeling to analyze the attenuation of the detected EM response when there are low-resistivity bodies in front of the roadway.The research in this paper can help effectively detecting the water-bearing low-resistivity body in front of the roadway drivage and lay a foundation for reducing the risk of water seepage accidents. 展开更多
关键词 coal mine roadway transient EM time-domain finite-element advanced detection
下载PDF
Support technologies for deep and complex roadways in underground coal mines:a review 被引量:125
5
作者 Hongpu Kang 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期261-277,共17页
Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analy... Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines. 展开更多
关键词 coal mines Deep and complex roadways Rock bolts Steel supports GROUTING Combined supports
下载PDF
Surrounding rock control of gob-side entry driving with narrow coal pillar and roadway side sealing technology in Yangliu Coal Mine 被引量:7
6
作者 Zha Wenhua Shi Hao +1 位作者 Liu San Kang Changhao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期819-823,共5页
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara... Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition. 展开更多
关键词 Narrow coal PILLAR Gob-side ENTRY driving SURROUNDING rock control roadway SIDE sealing technology
下载PDF
Layout and support design of a coal roadway in ultra-close multiple-seams 被引量:4
7
作者 严红 翁明月 +1 位作者 冯锐敏 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4385-4395,共11页
A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadwa... A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadway layout, and unreasonable support parameters. In order to solve this support problem and effectively save RUCMSs from frequent and abrupt disasters(such as serious deformation of the surrounding rock, roof cave ins, and coal side collapse), a comprehensive method is adopted here which includes theoretical analysis, numerical simulation, and field monitoring. A mechanical model was constructed to determine the stress distribution in the coal pillar after two sides of a longwall panel had been mined. Based on this model, the horizontal, vertical, and tangential stress equations for the plane below the floor of the upper-left coal pillar were deduced. In addition, a typical coal mine(the Jinggonger colliery, located in Shuozhou city, Shanxi province, China) with an average distance between its 9# and 11# coal seams of less than 8.0 was chosen to conduct research on the proper layout and reasonable support required for a typical coal roadway located within coal seam 11#. Using FLAC3D(Fast Lagrangian Analysis of Continua in 3-Dimensions) numerical software, eight schemes were designed with different horizontal distances(d) between the center lines of the coal pillar and the roadway in the lower coal seam(RLCS). The simulations and detailed analysis indicate that the proper distances required are between 22.5 and 27.5 m. A total of 20 simulation schemes were used to investigate the factors influencing the support provided by the key bolts(bolt length, spacing, distance between two rows, installation angle, and pre-tightening force). The results were analyzed and used to determine reasonable values for the support parameters. Field results show that the stability and strength of the RLCS can be effectively safeguarded using a combination of researched stress distribution characteristics, proper layout of the RLCS, and correct support parameters. 展开更多
关键词 ultra-close multiple-seams coal roadway stress DIS
下载PDF
Numerical simulations of full-wave fi elds and analysis of channel wave characteristics in 3-D coal mine roadway models 被引量:11
8
作者 Yang Si-Tong Wei Jiu-Chuan +2 位作者 Cheng Jiu-Long Shi Long-Qing Wen Zhi-Jie 《Applied Geophysics》 SCIE CSCD 2016年第4期621-630,737,共11页
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ... Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways. 展开更多
关键词 Channel wave 3-D wave field Numerical simulation coal mine roadway Advance detection
下载PDF
Prediction of upper limit position of bedding separation overlying a coal roadway within an extra-thick coal seam 被引量:5
9
作者 YAN Hong ZHANG Ji-xiong +2 位作者 LI Lin-yue FENG Rui-min LI Tian-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期448-460,共13页
Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-... Failure of the surrounding rock around a roadway induced by roof separation is one major type of underground roof-fall accidents.This failure can especially be commonly-seen in a bottom-driven roadway within an extra-thick coal seam("bottom-driven roadway"is used throughout for ease of reference),containing weak partings in their roof coal seams.To determine the upper limit position of the roof interlayer separation is the primary premise for roof control.In this study,a mechanical model for predicting the interlayer separation overlying a bottom-driven roadway within an extra-thick coal seam was established and used to deduce the vertical stress,and length,of the elastic,and plastic zones in the rock strata above the wall of the roadway as well as the formulae for calculating the deflection in different regions of rock strata under bearing stress.Also,an approach was proposed,calculating the stratum load,deflection,and limiting span of the upper limit position of the interlayer separation in a thick coal seam.Based on the key strata control theory and its influence of bedding separation,a set of methods judging the upper limit position of the roof interlayer separation were constructed.In addition,the theoretical prediction and field monitoring for the upper limit position of interlayer separation were conducted in a typical roadway.The results obtained by these two methods are consistent,indicating that the methods proposed are conducive to improving roof control in a thick coal seam. 展开更多
关键词 extra-thick coal seam bedding separation coal roadway roof fall mechanical model
下载PDF
Activation characteristics analysis on concealed fault in the excavating coal roadway based on microseismic monitoring technique 被引量:2
10
作者 Liu Chao Li Shugang +1 位作者 Cheng Cheng Xue Junhua 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期883-887,共5页
In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huai... In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents. 展开更多
关键词 EXCAVATION roadway FAULT Microseismic monitoring technique coal and gas OUTBURST ACTIVATION characteristics
下载PDF
Numerical simulation research on dynamical variation of permeability of coal around roadway based on gas-solid coupling model for gassy coal 被引量:2
11
作者 Tao Yang Bo Li Qiusheng Ye 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期925-932,共8页
Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal... Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway. 展开更多
关键词 Coupled model PERMEABILITY roadway Numerical simulation Gassy coal
下载PDF
Characteristics of stress distribution in floor strata and control of roadway stability under coal pillars 被引量:9
12
作者 Tongqiang Xiao Bai Jianbiao +1 位作者 Xu Lei Zhang Xuebin 《Mining Science and Technology》 EI CAS 2011年第2期243-247,共5页
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.... Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar. 展开更多
关键词 Close-distance seams coal pillar Stress distribution roadway layout Surrounding rock control
下载PDF
Similarity simulation of bolt support in a coal roadway in a tectonic stress field 被引量:6
13
作者 LU Yan LIU Changyou 《Mining Science and Technology》 EI CAS 2010年第5期718-722,共5页
In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity s... In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similarity simulation.We also studied the mechanism and types of bolt support functions in the coal roadway.The results show that with an increase in horizontal tectonic stress,the strata in the roof and floor of the roadway gradually separate and become shear failure areas.Coal in side walls moves,but its integrity remains intact.Side bolts are mainly affected by tension and roof bolts by the effect of shear. 展开更多
关键词 tectonic stress coal roadway bolt support similarity simulation
下载PDF
Research on space-time coupling action laws of anchor-cable strengthening supporting for rock roadway in deep coal mine 被引量:5
14
作者 CHANG Ju-cai XIE Guang-xiang 《Journal of Coal Science & Engineering(China)》 2012年第2期113-117,共5页
In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose cro... In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time. 展开更多
关键词 space-time coupling relationship anchor-cable supporting deep coal mine rock roadway
下载PDF
Roadway layout for recycling residual coal pillar in room-and-pillar mining of thick coal seam 被引量:2
15
作者 Jin Gan Wang Lianguo +2 位作者 Zhang Jihua Hu Minjun Duan Ning 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期729-734,共6页
In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residua... In the context of a room-and-pillar mining gob in Shanxi province in China,this paper numerically investigates the stress distribution and deformation rules of roadway surrounding rocks at various locations of residual coal pillars in room-and-pillar mining gobs using software FLAC3 D.It is found that the concentrated stress beneath coal pillars distributes in a shape of ellipse.A reasonable roadway layout is then proposed.In this design,it is indicated that roadways should be designed to avoid the supporting zones of pillars with increasing compression and take into account the roof falling and crushing in the upper gob.According to the surrounding rock deformation characteristics and mining roadway locations as well as the supporting principles of timely support,rock reinforcing,piecewise management and suiting local conditions,a new asymmetric shield supporting plan is proposed.The field surveying results show that this supporting plan can effectively control the roadway rock deformation,thus guarantee the safe and smooth construction of roadways. 展开更多
关键词 Room-and-pillar mine Residual coal pillar Repeated mining roadway layout Asymmetric support
下载PDF
Stability control of surrounding rocks for a coal roadway in a deep tectonic region 被引量:16
16
作者 Xiao Tongqiang Wang Xiangyu Zhang Zhigao 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期171-176,共6页
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su... In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved. 展开更多
关键词 Tectonic stress coal roadway Bedding plane Controlling Yielding coupling support
下载PDF
Study on destressing technology for a roadway driven along goaf in a fully mechanized top-coal caving face 被引量:4
17
作者 瞿群迪 《Journal of Coal Science & Engineering(China)》 2003年第1期33-37,共5页
Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway dri... Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0). 展开更多
关键词 fully mechanized top coal caving gob side entry driving roadway layout
下载PDF
Propagation law of shock waves and gas flow in cross roadway caused by coal and gas outburst 被引量:17
18
作者 Zhou Aitao Wang Kai Wu Zeqi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期23-29,共7页
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ... In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow. 展开更多
关键词 coal and gas outburst Shock waves and gas flow Propagation law Cross roadway
下载PDF
Analysis of the danger zone liable to spontaneous ignition around coal roadway at fully mechanized long-wall top-coal caving face 被引量:3
19
作者 邓军 徐通模 徐精彩 《Journal of Coal Science & Engineering(China)》 2002年第2期55-59,共5页
The intensity of heat output of coal, the rate of oxygen consumption and the influence function of coal size are tested by the big coal spontaneous combustion experiment unit. The independence of the coefficient of he... The intensity of heat output of coal, the rate of oxygen consumption and the influence function of coal size are tested by the big coal spontaneous combustion experiment unit. The independence of the coefficient of heat convection is studied. And based on the conservation principle of energy and the real conditions, such as coal temperature,air temperature, the geometry size of roadway, air flux, the oxygen concentration in the loose coal around the roadway, the threshold parameters resulting coal spontaneous combustion are put forward, and the index determining the danger zone liable to self ignite are evaluated. Finally, the method determining the danger zone liable to spontaneous ignition around coal roadway at fully mechanized long wall top coal caving face is put forward. Based on the determination method and real conditions in the roadway, the coal around roadway can be divided four zones. 展开更多
关键词 coal seam roadway danger zone liable to self ignite threshold parameters
下载PDF
Surrounding rock control mechanism of deep coal roadways and its application 被引量:10
20
作者 Xie Shengrong Li Erpeng +3 位作者 Li Shijun Wang Jinguang He Chongchong Yang Yafeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期429-434,共6页
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th... Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period. 展开更多
关键词 Deep coal roadway Truss system Inverted arch deflection Equivalent uniform load Powerful anchor support
下载PDF
上一页 1 2 226 下一页 到第
使用帮助 返回顶部