The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU ...We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.展开更多
To predict the soft error rate for applications, it is essential to study the energy dependence of the single-event-upset(SEU) cross-section. In this work, we present a direct measurement of the SEU cross-section with...To predict the soft error rate for applications, it is essential to study the energy dependence of the single-event-upset(SEU) cross-section. In this work, we present a direct measurement of the SEU cross-section with the Back-n white neutron source at the China Spallation Neutron Source. The measured cross section is consistent with the soft error data from the manufacturer and the result suggests that the threshold energy of the SEU is about 0.5 Me V, which confirms the statement in Iwashita’s report that the threshold energy for neutron soft error is much below that of the(n, α) cross-section of silicon.In addition, an index of the effective neutron energy is suggested to characterize the similarity between a spallation neutron beam and the standard atmospheric neutron environment.展开更多
With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Curren...With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.展开更多
胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种...胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种新型的具有SEU自检和自修复能力的基因循环存储模块,可以在维持胚胎电子细胞阵列正常工作的情况下,实时有效的检测并修复1 bit SEU。以2 bit进位加法器为例,通过仿真实验,验证了胚胎电子细胞的SEU自检和自修复能力。展开更多
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
文摘We study the problem of multiple node upset (MNU) using three-dimensional device simulation. The results show the transient floating node and charge lateral diffusion are the key reasons for MNU. We compare the MNU with multiple bit upset (MBU),and find that their characteristics are different. Methods to avoid MNU are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 2032165 and 62004158)the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 52127817)+1 种基金the State Key Laboratory of Particle Detection and Electronics (Grant Nos. SKLPDE-ZZ-201801 and SKLPDE-ZZ-202008)the Special Funds for Science and Technology Innovation Strategy of Guangdong Province, China (Grant No. 2018A0303130030)。
文摘To predict the soft error rate for applications, it is essential to study the energy dependence of the single-event-upset(SEU) cross-section. In this work, we present a direct measurement of the SEU cross-section with the Back-n white neutron source at the China Spallation Neutron Source. The measured cross section is consistent with the soft error data from the manufacturer and the result suggests that the threshold energy of the SEU is about 0.5 Me V, which confirms the statement in Iwashita’s report that the threshold energy for neutron soft error is much below that of the(n, α) cross-section of silicon.In addition, an index of the effective neutron energy is suggested to characterize the similarity between a spallation neutron beam and the standard atmospheric neutron environment.
基金The Open Project Program of the Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems(2023SZKF17)the University Synergy Innovation Program of Anhui Province(GXXT-2022-080)。
文摘With the development of semiconductor technology,the size of transistors continues to shrink.In complex radiation environments in aerospace and other fields,small-sized circuits are more prone to soft error(SE).Currently,single-node upset(SNU),double-node upset(DNU)and triple-node upset(TNU)caused by SE are relatively common.TNU’s solution is not yet fully mature.A novel and low-cost TNU self-recoverable latch(named NLCTNURL)was designed which is resistant to harsh radiation effects.When analyzing circuit resiliency,a double-exponential current source is used to simulate the flipping behavior of a node’s stored value when an error occurs.Simulation results show that the latch has full TNU self-recovery.A comparative analysis was conducted on seven latches related to TNU.Besides,a comprehensive index combining delay,power,area and self-recovery—DPAN index was proposed,and all eight types of latches from the perspectives of delay,power,area,and DPAN index were analyzed and compared.The simulation results show that compared with the latches LCTNURL and TNURL which can also achieve TNU self-recoverable,NLCTNURL is reduced by 68.23%and 57.46%respectively from the perspective of delay.From the perspective of power,NLCTNURL is reduced by 72.84%and 74.19%,respectively.From the area perspective,NLCTNURL is reduced by about 28.57%and 53.13%,respectively.From the DPAN index perspective,NLCTNURL is reduced by about 93.12%and 97.31%.The simulation results show that the delay and power stability of the circuit are very high no matter in different temperatures or operating voltages.
文摘胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种新型的具有SEU自检和自修复能力的基因循环存储模块,可以在维持胚胎电子细胞阵列正常工作的情况下,实时有效的检测并修复1 bit SEU。以2 bit进位加法器为例,通过仿真实验,验证了胚胎电子细胞的SEU自检和自修复能力。