According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method...According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.展开更多
To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, ...To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, were selected as the design parameters. Numerical model of the film cooling system was established, validated, and used to generate 32 groups of training samples. Least square support vector machine(LS-SVM) was applied for surrogate model, and the optimal design parameters were determined by a kind of chaotic optimization algorithm. As hole length, lateral expansion angle and forward expansion angle are 90 mm, 20° and 5°, the area-averaged film cooling effectiveness can reach its maximum value in the design space. LS-SVM coupled with chaotic optimization algorithm is a promising scheme for the optimization of shaped film cooling holes.展开更多
基金Supported by National Natural Science Foundation of China (52104029,U2139204)PetroChina Science and Technology Innovation Foundation (2021 DQ02-0501)。
文摘According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.
基金Project(U1508212)supported by the National Natural Science Foundation of ChinaProject(2015M570448)supported by the Postdoctoral Science Foundation of China
文摘To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, were selected as the design parameters. Numerical model of the film cooling system was established, validated, and used to generate 32 groups of training samples. Least square support vector machine(LS-SVM) was applied for surrogate model, and the optimal design parameters were determined by a kind of chaotic optimization algorithm. As hole length, lateral expansion angle and forward expansion angle are 90 mm, 20° and 5°, the area-averaged film cooling effectiveness can reach its maximum value in the design space. LS-SVM coupled with chaotic optimization algorithm is a promising scheme for the optimization of shaped film cooling holes.