Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experi...Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.展开更多
基金Supported by the High Technology Research and Development Programme of China (No. 2002AA526012 )and the National Natural Science Foundation of China (No. 50323001).
文摘Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.