A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes....A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.展开更多
We study the dependence of qualitative behavior of the numerical solutions (obtained by a projective and upwind finite difference scheme) on the ignition temperature for a combustion model problem with general initi...We study the dependence of qualitative behavior of the numerical solutions (obtained by a projective and upwind finite difference scheme) on the ignition temperature for a combustion model problem with general initial condition. Convergence to weak solution is proved under the Courant-Friedrichs-Lewy condition. Some condition on the ignition temperature is given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Finally, we give some numerical examples which show that a strong detonation wave can be transformed to a weak detonation wave under some well-chosen ignition temperature.展开更多
基金This research is supported by the National Natural Science Foundation of China(Grant No. 10301029, 10241003).
文摘A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.
文摘We study the dependence of qualitative behavior of the numerical solutions (obtained by a projective and upwind finite difference scheme) on the ignition temperature for a combustion model problem with general initial condition. Convergence to weak solution is proved under the Courant-Friedrichs-Lewy condition. Some condition on the ignition temperature is given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Finally, we give some numerical examples which show that a strong detonation wave can be transformed to a weak detonation wave under some well-chosen ignition temperature.