It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclode...It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.展开更多
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carb...Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.展开更多
Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrosp...Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.展开更多
In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems o...In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems of ZIF-8 powder.The effects of pH,contact time,and uranium concentration on the adsorption of ZIF-8/PP-g-MAH were investigated.Adsorption isotherm and kinetics analysis show that ZIF-8/PP-g-MAH has a high adsorption capacity of 478.5 mg/g,which is 1.26 times higher than that of ZIF-8,and a rapid adsorption equilibrium of 120 min,which is shortened to one-third of that required for ZIF-8(360 min).The adsorption process of ZIF-8/PP-g-MAH is consistent with that of the Langmuir isotherm and pseudo-second-order dynamic model.ZIF-8/PP-g-MAH also exhibits good selectivity for uranium in simulated seawater.The high adsorption performance of ZIF-8/PP-g-MAH is attributed to its membrane structure,which improves the utilization of coordination sites,including Zn-OH,C-N,and C=N.This study provides an efficient adsorption material for rapid uranium extraction,thus promoting the development of uranium extraction technologies.展开更多
A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling t...A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.展开更多
Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
针对当前集成了不同厂家几套子系统的一些燃驱压缩机组控制系统结构复杂、维护成本高等问题,应用基于Mark VIe控制平台来升级改造该系统。以某改造项目为例,应用双冗余Mark VIe控制系统架构,Mark VIe SIL3模件作为紧急停机和火气保护系...针对当前集成了不同厂家几套子系统的一些燃驱压缩机组控制系统结构复杂、维护成本高等问题,应用基于Mark VIe控制平台来升级改造该系统。以某改造项目为例,应用双冗余Mark VIe控制系统架构,Mark VIe SIL3模件作为紧急停机和火气保护系统的硬件,同时采用Mark VIe ControlST统一软件平台。结果表明:新控制系统采用了一体化硬件、软件设计,提高了机组控制系统的安全可靠性,有利于日常运行维护,而且新系统具有在线监测功能,有助于系统故障排查。展开更多
基金National Natural Science Foundation of China(21603064,52102214)Natural Science Foundation of Jiangxi Province(20202BABL203026,20212BAB203001,20202BABL214016)College Student Innovation and Enterprise Programme of Jiangxi Province(S202310405010)provided funding for this study.
文摘It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
基金supported by the National Natural Science Foundation of China(Grant No.U2167212)。
文摘Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.
基金supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource(Grant No.2021ABPCR010)the Natural Science Research Project of Jiangsu Higher Education Institutions of China(Grants No.20KJB150035,21KJD610004,and 21KJA530004).
文摘Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.
文摘In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems of ZIF-8 powder.The effects of pH,contact time,and uranium concentration on the adsorption of ZIF-8/PP-g-MAH were investigated.Adsorption isotherm and kinetics analysis show that ZIF-8/PP-g-MAH has a high adsorption capacity of 478.5 mg/g,which is 1.26 times higher than that of ZIF-8,and a rapid adsorption equilibrium of 120 min,which is shortened to one-third of that required for ZIF-8(360 min).The adsorption process of ZIF-8/PP-g-MAH is consistent with that of the Langmuir isotherm and pseudo-second-order dynamic model.ZIF-8/PP-g-MAH also exhibits good selectivity for uranium in simulated seawater.The high adsorption performance of ZIF-8/PP-g-MAH is attributed to its membrane structure,which improves the utilization of coordination sites,including Zn-OH,C-N,and C=N.This study provides an efficient adsorption material for rapid uranium extraction,thus promoting the development of uranium extraction technologies.
文摘A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
文摘针对当前集成了不同厂家几套子系统的一些燃驱压缩机组控制系统结构复杂、维护成本高等问题,应用基于Mark VIe控制平台来升级改造该系统。以某改造项目为例,应用双冗余Mark VIe控制系统架构,Mark VIe SIL3模件作为紧急停机和火气保护系统的硬件,同时采用Mark VIe ControlST统一软件平台。结果表明:新控制系统采用了一体化硬件、软件设计,提高了机组控制系统的安全可靠性,有利于日常运行维护,而且新系统具有在线监测功能,有助于系统故障排查。