We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculati...We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.展开更多
We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe ...We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) w...By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.展开更多
We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alka...We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.展开更多
Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g...Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.展开更多
The structural,elastic,and electronic properties of NiAl alloyed with rare earth elements Pr,Pm,Sm,and Eu are investigated by using density functional theory(DFT).The study suggests that Pr,Pm,Sm,and Eu all tend to ...The structural,elastic,and electronic properties of NiAl alloyed with rare earth elements Pr,Pm,Sm,and Eu are investigated by using density functional theory(DFT).The study suggests that Pr,Pm,Sm,and Eu all tend to be substituted for an Al site.Ni8Al7Pm possesses the largest ductility.Only the hardness and ductility of Ni8Al7Eu are enhanced simultaneously.The covalency strength of the Ni-Al bond in Ni8Al7Pm is higher than that in Ni8Al7Eu.The covalency strength of an Al-Al bond and that of a Ni-Ni bond in Ni8Al7Eu are higher than that in Ni8Al7Pm.The Ni-Pm bond and the Ni-Eu bond are covalent,and the covalency strength of the Ni-Pm bond is greater.The Al-Pm bond and the Al-Eu bond show great covalency strength and ionicity,respectively.展开更多
We perform first-principles calculations of the lattice constants, elastic constants, and optical properties for alpha- and gamma-uranium based on the ultra-soft pseudopotential method. Lattice constants and equilibri...We perform first-principles calculations of the lattice constants, elastic constants, and optical properties for alpha- and gamma-uranium based on the ultra-soft pseudopotential method. Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results. Some difference exists between our calculated elastic constants and the experimental data. Based on the satisfactory ground state electronic structure calculations, the optical co ductivity, dielectric function, refractive index, and extinction coefficients are also obtained. These calculated optical properties are compared with our results and other published experimental data.展开更多
The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force struct...The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.展开更多
We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for...We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.22176181,11874329,11934020,and U1930121)the Foundation of the President of China Academy of Engineering Physics (Grant No.YZJJZQ2022011)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No.WDZC202101)。
文摘We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.
基金Supported by the New Century Excellent Talents in University in Ministry of Education of China under Grant No NCET-09-0867
文摘We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
基金the Natural Science Foundation of Liaoning under grant No.20022150 the National Natural Science Foundation of China under grant No.50271030.
文摘By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.
基金Funded by National Key Research and Development Program of China(No.2017YFB0310400)the National Natural Science Foundation of China(Nos.51872217,51932006,51972246 and 51521001)+3 种基金Fundamental Research Funds for the Central Universities in ChinaState Key Laboratory of Advanced Electromagnetic Engineering and Technology(Huazhong University of Science and Technology),the Joint Fund(No.6141A02022255)the Major Program of the Specialized Technological Innovation of HuBei Province,China(No.2019AFA176)the“111”Project(No.B13035)。
文摘We used density functional theory(DFT)calculations to study the influence of alkali earth metal element(AE)doping on the crystal structure and electronic band structure ofα-Si3N4.The diversity of atomic radii of alkaline earth metal elements results in structural expansion when they were doped into theα-Si3N4 lattice.Formation energies of the doped structures indicate that dopants prefer to occupy the interstitial site under the nitrogen-deficient environment,while substitute Si under the nitrogen-rich environment,which provides a guide to synthesizingα-Si3N4 with different doping types by controlling nitrogen conditions.For electronic structures,energy levels of the dopants appear in the bottom of the conduction band or the top of the valence band or the forbidden band,which reduces the bandgap ofα-Si3N4.
文摘Noble metals have been widely used as heterogeneous catalysts because they exhibit high activity and selectivity for many reactions of both academic and industrial interest.The introduction of light atomic species(e.g.,H,B,C,and N)into noble metal lattices plays an important role in optimizing catalytic performance by modulating structural and electronic properties.In this review,we present a general overview of the recent advances in the modification of noble metals with light alloying elements for various catalytic reactions,particularly for energy‐related applications.We summarize the types,location,concentration,and ordering degree of light atoms as major factors in the performance of noble metal‐based catalysts,with emphasis on how they can be rationally controlled to promote activity and selectivity.We then summarize the synthetic strategies developed to incorporate light elements and highlight the theoretical and experimental methods for understanding the alloying effects.We further focus on the wide usage of noble metal‐based catalysts modified with different light alloying atoms and attempt to correlate the structural features with their catalytic performances.Finally,we discuss current challenges and future perspectives regarding the development of highly efficient noble metal‐based catalysts modified with light elements.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50871035)the Program of Excellent Team at Harbin Institute of Technology,China
文摘The structural,elastic,and electronic properties of NiAl alloyed with rare earth elements Pr,Pm,Sm,and Eu are investigated by using density functional theory(DFT).The study suggests that Pr,Pm,Sm,and Eu all tend to be substituted for an Al site.Ni8Al7Pm possesses the largest ductility.Only the hardness and ductility of Ni8Al7Eu are enhanced simultaneously.The covalency strength of the Ni-Al bond in Ni8Al7Pm is higher than that in Ni8Al7Eu.The covalency strength of an Al-Al bond and that of a Ni-Ni bond in Ni8Al7Eu are higher than that in Ni8Al7Pm.The Ni-Pm bond and the Ni-Eu bond are covalent,and the covalency strength of the Ni-Pm bond is greater.The Al-Pm bond and the Al-Eu bond show great covalency strength and ionicity,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 91026016)
文摘We perform first-principles calculations of the lattice constants, elastic constants, and optical properties for alpha- and gamma-uranium based on the ultra-soft pseudopotential method. Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results. Some difference exists between our calculated elastic constants and the experimental data. Based on the satisfactory ground state electronic structure calculations, the optical co ductivity, dielectric function, refractive index, and extinction coefficients are also obtained. These calculated optical properties are compared with our results and other published experimental data.
文摘The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.
基金Supported by the National Key Laboratory Foundation of China (9140C6601010804)Sichuan Provincial Key Laboratory for Applied Nuclear Technology in Geology Foundation (27-7).
文摘We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.