Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
Similar to chromium contamination, the environmental contamination caused by uranium in radioactive coal bottom ash(CBA) is primarily dependent on the chemical speciation of uranium. However, the relationship betwee...Similar to chromium contamination, the environmental contamination caused by uranium in radioactive coal bottom ash(CBA) is primarily dependent on the chemical speciation of uranium. However, the relationship between uranium speciation and environmental contamination has not been adequately studied. To determine the relationship between uranium speciation and environmental contamination, X-ray absorption fine structure(XAFS) and X-ray photoelectron spectra(XPS) analyses were performed to determine the uranium speciation in CBA exposed to different chemical environments and simulated natural environments. The leachability of the different forms of uranium in the CBA was studied via a simulated acid rain leaching experiment, and the results showed that 57.0% of the total uranium was leached out as U(VI). The results of a linear combination fit(LCF)of the X-ray absorption near edge structure(XANES) spectrum revealed that in the raw CBA, the uranium mainly occurred as U_3O_8(71.8%). However, in the iron-rich particles, the uranium mainly occurred as UO_2(91.9%) after magnetic separation. Magnetite is a ubiquitous ferrousbearing oxide, and it was effective for the sorption of U(IV). The result of FeSO_4 leaching experiment indicated that 96.57% of total uranium was reduced from U(VI) to U(IV) when infiltrated with the FeSO_4 solution for 6 months. This result clearly demonstrated the changes in chemical valence of uranium in the coal ash and provided a conceptual principle for preventing uranium migration from ash to the surrounding soil and plants.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
基金supported by the Talent Support Fund of Tsinghua University(No.413405001)
文摘Similar to chromium contamination, the environmental contamination caused by uranium in radioactive coal bottom ash(CBA) is primarily dependent on the chemical speciation of uranium. However, the relationship between uranium speciation and environmental contamination has not been adequately studied. To determine the relationship between uranium speciation and environmental contamination, X-ray absorption fine structure(XAFS) and X-ray photoelectron spectra(XPS) analyses were performed to determine the uranium speciation in CBA exposed to different chemical environments and simulated natural environments. The leachability of the different forms of uranium in the CBA was studied via a simulated acid rain leaching experiment, and the results showed that 57.0% of the total uranium was leached out as U(VI). The results of a linear combination fit(LCF)of the X-ray absorption near edge structure(XANES) spectrum revealed that in the raw CBA, the uranium mainly occurred as U_3O_8(71.8%). However, in the iron-rich particles, the uranium mainly occurred as UO_2(91.9%) after magnetic separation. Magnetite is a ubiquitous ferrousbearing oxide, and it was effective for the sorption of U(IV). The result of FeSO_4 leaching experiment indicated that 96.57% of total uranium was reduced from U(VI) to U(IV) when infiltrated with the FeSO_4 solution for 6 months. This result clearly demonstrated the changes in chemical valence of uranium in the coal ash and provided a conceptual principle for preventing uranium migration from ash to the surrounding soil and plants.