Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a si...Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing.展开更多
A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsber...A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.展开更多
To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The...To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.展开更多
To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid en...To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.展开更多
Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples wer...Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
The studies on hydrothermal alteration-induced eff ects in surface and subsurface rocks provide useful information in the characterization and exploitation of a geothermal reservoir.Generally,these studies are based o...The studies on hydrothermal alteration-induced eff ects in surface and subsurface rocks provide useful information in the characterization and exploitation of a geothermal reservoir.Generally,these studies are based on traditional,and reliable methods like petrography(primary and secondary minerals,and grade of alteration),and geochemistry(mobility of elements,changes in mass and concentration of elements,and fluid inclusions).Recently,apart from these established methods,some methods based on the geochemical(Chemical Index of Alteration,CIA;Weathering Index of Parkar,WIP;Loss on Ignition,LOI;and Sulfur,S)and rock magnetic properties(magnetic susceptibility,χlf;and percentage frequency-dependent susceptibility,χfd%)are also being applied in the identification of whether a rock is an altered or a fresh one.The Acoculco Geothermal Field(AGF),Mexico,is characterized by high temperature and very low permeability,and it is considered a promissory Enhanced Geothermal System.The following changes are observed in the rocks as a result of an increase in hydrothermal alteration:(1)an increase in CIA,LOI,and S values,and a decrease in WIP;(2)an increase in quartz and quartz polymorph minerals(silicification),and clay minerals(argillization);and(3)decrease inχlf values.At AGF,the most altered surface acid rocks are characterized by entirely quartz and its polymorphs,and clay minerals.The present study also indicates the applicability of the binary plots of major elements(felsic vs mafic component)and rock magnetic parameters(χlf vs.χfd%).The rock withχfd%value of 2-10 andχlf value<0.5×10^(-6)m^(3) kg~(-1)indicate the presence of single domain and stable single domain grains,which in turn suggests that it is an altered rock.These methods are simple to apply,rapid,reliable,and have the potential to become eff ective tools for the identifi cation of hydrothermally altered rocks during the initial stage of geothermal exploration.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic ...Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.展开更多
Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or ...Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both...This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.展开更多
In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directl...In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.展开更多
Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption...Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption have limited the development of HTC technology. In conventional batch reactors, the temperature and pressure are typically coupled at saturated states. In this study, a decoupled temperature and pressure hydrothermal(DTPH) reaction system was developed to decrease the temperature of the HTC reaction of lignocellulosic biomass(rice straw and poplar leaves). The properties of hydrochars were analyzed by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), Raman spectroscopy, X-ray diffraction(XRD), thermogravimetric analyzer(TGA), etc. to propose the reaction mechanism. The results showed that the HTC reaction of lignocellulosic biomass could be realized at a low temperature of 200℃ in the DTPH process, breaking the temperature limit(230℃) in the conventional process. The DTPH method could break the barrier of the crystalline structure of cellulose in the lignocellulosic biomass with high cellulose content, realizing the carbonization of cellulose and hemicellulose with the dehydration, unsaturated bond formation, and aromatization. The produced hydrochar had an appearance of carbon microspheres, with high calorific values, abundant oxygen-containing functional groups, a certain degree of graphitization, and good thermal stability. Cellulose acts not only as a barrier to protect itself and hemicellulose from decomposition, but also as a key precursor for the formation of carbon microspheres. This study shows a promising method for synthesizing carbon materials from lignocellulosic biomass with a carbon-negative effect.展开更多
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo...Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.展开更多
Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction...Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction formed a series of NE-NNE oriented faults under a NW-SE regional stress field,along which a number of thermal springs occur.Previous studies have focused on the genesis mechanism of specific geothermal fields in SE China,but the general characteristics of hydrothermal systems in SE China remains unclear.In this study,we investigate the correlation between geothermal activity,hydrochemical type and regional faults by studying the distribution of hydrothermal activity and geochemical properties of typical hydrothermal systems in SE China.The hydrothermal systems in SE China have a crustal thermally-dominated structural origin unique to the specific geological and tectonic conditions of the Eurasian Plate margin.The upwelling of the asthenosphere and the widespread granitoids with high radiogenic heat production in SE China provide major heat sources for regional geothermal anomalies.The NE-oriented crustal thermally-dominated faults are critical for the formation of geothermal anomalies and NW-oriented extensional faults have created favorable conditions for meteoric water infiltration,transportation and the formation of thermal springs.展开更多
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing...Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.展开更多
Cadmium(Cd)isotopes in seawater have been proven as an important geochemical tool for tracing ocean Cd circulation in the modern ocean.In this study,we evaluated a new method to separate Cd(*60 ng)from seawater using ...Cadmium(Cd)isotopes in seawater have been proven as an important geochemical tool for tracing ocean Cd circulation in the modern ocean.In this study,we evaluated a new method to separate Cd(*60 ng)from seawater using Chelex resin(1.0 g)coupled with AG-MP-1M resin.The results show that the Chelex resin is suffi-cient to remove Cd from Na and Mg matrix with Cd recoveries at 98.3±3.5%(2SD,N=6);while AG-MP-1M resin could separate Cd from the residual Na,Mg,and isobaric inferences.The total Cd recoveries of the method are 96.3±1.5%(2SD;N=4)and the salinity of the samples has no significant impacts on Cd recovery.Cd isotope ratios were measured using a Nu PlasmaⅢMC-ICP-MS and^(111)Cd–^(110)Cd double spike technique.By comparing theδ^(114/110)Cd values(0.00±0.06%)of synthetic seawaters doped with Cd isotope standard(NIST-3108;treated by Chelex+AG-MP-1M resin)and the reference value(-0.00%),no variations were observed.We also analyzed the Cd isotope compositions of three deep seawaters from a column at the Southwest Indian Ocean Ridges(SWIR).Theδ^(114/110)Cd values of the col-umn are decreased from 1.05±0.05%at 3200 m to 0.36±0.05%at 2800 m,differing from reportedδ^(114/110)Cd values of deep seawater in other oceans.Considering the spatial distance between the column and active hydrothermal vents in SWIR(-13 km),we propose that such positiveδ^(114/110)Cd values of deep seawater were likely contaminated by vent fluids,which could provide heavy Cd isotope to deep seawaters.This study demon-strates that Cd isotope is more sufficient to distinguish the impact of plumes on deep seawater.展开更多
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde...Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.展开更多
基金the Ministry of Human Resource Development,Govt.of India,for providing scholarship grants to the authors.
文摘Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing.
基金Supported by the National Natural Science Foundation of China(No.41976075)the National Key Research and Development Program of China(No.2021YFF0501302)+1 种基金the Fundamental Research Funds for National Non-profit Institute Grant(No.JG 2103)the China Ocean Mineral Resources R&D Association Project(No.DY135-S 2-1-03)。
文摘A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.
基金Supported by the National Science and Technology Major Project(2016ZX05007004-001)Innovation Fund Project of CNPC Carbonate Rock Key Laboratory(RIPED-HZDZY-2019-JS-695).
文摘To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential.
基金the financial support from National Natural Science Foundation of China(21838006,21776159)National Key Research and Development Program of China(2018YFC1902101)。
文摘To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.
基金Supported by the National Natural Science Foundation of China(No.42106080)the Laboratory for Marine Geology+2 种基金China Ocean Mineral Resources R&D Association Project(No.DY135-S2-2-03)the Natural Science Foundation of Shandong Province(No.ZR2020QD074)the Talents Research Start-up Funding Project of Ludong University。
文摘Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
基金Rock magnetic instruments used in this work are procured with the funding from CEMIE Geo project 207032(Fondo de Sustentabilidad Energética de CONACy T-SENER,Government of Mexico)。
文摘The studies on hydrothermal alteration-induced eff ects in surface and subsurface rocks provide useful information in the characterization and exploitation of a geothermal reservoir.Generally,these studies are based on traditional,and reliable methods like petrography(primary and secondary minerals,and grade of alteration),and geochemistry(mobility of elements,changes in mass and concentration of elements,and fluid inclusions).Recently,apart from these established methods,some methods based on the geochemical(Chemical Index of Alteration,CIA;Weathering Index of Parkar,WIP;Loss on Ignition,LOI;and Sulfur,S)and rock magnetic properties(magnetic susceptibility,χlf;and percentage frequency-dependent susceptibility,χfd%)are also being applied in the identification of whether a rock is an altered or a fresh one.The Acoculco Geothermal Field(AGF),Mexico,is characterized by high temperature and very low permeability,and it is considered a promissory Enhanced Geothermal System.The following changes are observed in the rocks as a result of an increase in hydrothermal alteration:(1)an increase in CIA,LOI,and S values,and a decrease in WIP;(2)an increase in quartz and quartz polymorph minerals(silicification),and clay minerals(argillization);and(3)decrease inχlf values.At AGF,the most altered surface acid rocks are characterized by entirely quartz and its polymorphs,and clay minerals.The present study also indicates the applicability of the binary plots of major elements(felsic vs mafic component)and rock magnetic parameters(χlf vs.χfd%).The rock withχfd%value of 2-10 andχlf value<0.5×10^(-6)m^(3) kg~(-1)indicate the presence of single domain and stable single domain grains,which in turn suggests that it is an altered rock.These methods are simple to apply,rapid,reliable,and have the potential to become eff ective tools for the identifi cation of hydrothermally altered rocks during the initial stage of geothermal exploration.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
基金supported by the Overseas Expertise Introduction Center for Discipline Innovation(D18025)National Nature Science Foundation of China(Grant No.41931295)
文摘Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.
基金financially supported by a project of the Ministry of Science and Technology,SINOPEC(No.P13071)a project of the Petroleum Exploration and Production Research Institute,SINOPEC(No.YK514003).
文摘Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
文摘This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.
基金This work was supported by the National Natural Science Foundation of China(No.11775107)the Key Projects of Education Department of Hunan Province of China(No.16A184).
文摘In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.
基金The financial support from the Key-Area Research and Development Program of Guangdong Province (2020B1111380001)the Beijing Municipal Natural Science Foundation (2222012)+1 种基金the National Natural Science Foundation of China (Grant No.52070116)the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund。
文摘Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption have limited the development of HTC technology. In conventional batch reactors, the temperature and pressure are typically coupled at saturated states. In this study, a decoupled temperature and pressure hydrothermal(DTPH) reaction system was developed to decrease the temperature of the HTC reaction of lignocellulosic biomass(rice straw and poplar leaves). The properties of hydrochars were analyzed by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), Raman spectroscopy, X-ray diffraction(XRD), thermogravimetric analyzer(TGA), etc. to propose the reaction mechanism. The results showed that the HTC reaction of lignocellulosic biomass could be realized at a low temperature of 200℃ in the DTPH process, breaking the temperature limit(230℃) in the conventional process. The DTPH method could break the barrier of the crystalline structure of cellulose in the lignocellulosic biomass with high cellulose content, realizing the carbonization of cellulose and hemicellulose with the dehydration, unsaturated bond formation, and aromatization. The produced hydrochar had an appearance of carbon microspheres, with high calorific values, abundant oxygen-containing functional groups, a certain degree of graphitization, and good thermal stability. Cellulose acts not only as a barrier to protect itself and hemicellulose from decomposition, but also as a key precursor for the formation of carbon microspheres. This study shows a promising method for synthesizing carbon materials from lignocellulosic biomass with a carbon-negative effect.
基金support from the Fundamental Research Funds for the Central Universities of Hohai university(B200202122)National Natural Science Foundation of China(51878246 and 51979099)+1 种基金the Natural Science Foundation of Jiangsu Province of China(BK20191303)Key Research and Development Project of Jiangsu Province of China(BE2017148).
文摘Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1507401)the Project of the Chinese Geological Survey(Grant Nos.DD20230019,DD20221676)。
文摘Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction formed a series of NE-NNE oriented faults under a NW-SE regional stress field,along which a number of thermal springs occur.Previous studies have focused on the genesis mechanism of specific geothermal fields in SE China,but the general characteristics of hydrothermal systems in SE China remains unclear.In this study,we investigate the correlation between geothermal activity,hydrochemical type and regional faults by studying the distribution of hydrothermal activity and geochemical properties of typical hydrothermal systems in SE China.The hydrothermal systems in SE China have a crustal thermally-dominated structural origin unique to the specific geological and tectonic conditions of the Eurasian Plate margin.The upwelling of the asthenosphere and the widespread granitoids with high radiogenic heat production in SE China provide major heat sources for regional geothermal anomalies.The NE-oriented crustal thermally-dominated faults are critical for the formation of geothermal anomalies and NW-oriented extensional faults have created favorable conditions for meteoric water infiltration,transportation and the formation of thermal springs.
基金support provided by the National Natural Science Foundation of China (21978143 and 21878164)。
文摘Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.
基金supported by the National Natural Science Foundation of China(Grant No.42073010)the Key Research and Development Program of Yunnan Province(Grant No.202103AQ100003)a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of Sciences.
文摘Cadmium(Cd)isotopes in seawater have been proven as an important geochemical tool for tracing ocean Cd circulation in the modern ocean.In this study,we evaluated a new method to separate Cd(*60 ng)from seawater using Chelex resin(1.0 g)coupled with AG-MP-1M resin.The results show that the Chelex resin is suffi-cient to remove Cd from Na and Mg matrix with Cd recoveries at 98.3±3.5%(2SD,N=6);while AG-MP-1M resin could separate Cd from the residual Na,Mg,and isobaric inferences.The total Cd recoveries of the method are 96.3±1.5%(2SD;N=4)and the salinity of the samples has no significant impacts on Cd recovery.Cd isotope ratios were measured using a Nu PlasmaⅢMC-ICP-MS and^(111)Cd–^(110)Cd double spike technique.By comparing theδ^(114/110)Cd values(0.00±0.06%)of synthetic seawaters doped with Cd isotope standard(NIST-3108;treated by Chelex+AG-MP-1M resin)and the reference value(-0.00%),no variations were observed.We also analyzed the Cd isotope compositions of three deep seawaters from a column at the Southwest Indian Ocean Ridges(SWIR).Theδ^(114/110)Cd values of the col-umn are decreased from 1.05±0.05%at 3200 m to 0.36±0.05%at 2800 m,differing from reportedδ^(114/110)Cd values of deep seawater in other oceans.Considering the spatial distance between the column and active hydrothermal vents in SWIR(-13 km),we propose that such positiveδ^(114/110)Cd values of deep seawater were likely contaminated by vent fluids,which could provide heavy Cd isotope to deep seawaters.This study demon-strates that Cd isotope is more sufficient to distinguish the impact of plumes on deep seawater.
基金supported by the Fundamental Research Funds for the Central Universities of Southwest Jiaotong University,supported by Sichuan Science and Technology Program(2021YFS0284).
文摘Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.