Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijin...Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.展开更多
With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control ...With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.展开更多
The strategic delineation of the urban development boundary(UDB)is an effective initiative for efficient land resource allocation and for facilitating planned urban development.To align with sustainable development ob...The strategic delineation of the urban development boundary(UDB)is an effective initiative for efficient land resource allocation and for facilitating planned urban development.To align with sustainable development objectives,UDB definitions have evolved to reconcile urban development with ecological preservation.This study presents a UDB delineation framework from an integrated perspective that incorporates both demand-oriented and comprehensive constraints.Specifically,the urban construction land demand area was estimated based on population projections,meanwhile,the ecological red line(ERL)was delineated and integrated into the evaluation of the construction land suitability.Subsequently,with the demand area as the simulation target and unsuitable areas as comprehensive constraints,the UDB was delineated by simulating future land use patterns.The proposed framework was applied to Wuhan,a rapidly urbanizing city in central China,where the delineation of the UDB serves the dual purpose of managing the rapid expansion of built-up land and achieving a harmonious balance between urban development imperatives and ecological protection goals.Moreover,based on the results and analysis,policy implications for the rational spatial planning of Wuhan were proposed,encompassing the spatial patterns and scientific decision-making in ecological conservation and urban development.The results demonstrate that the efficacy of adopting a comprehensive perspective in delineating UDB effectively reconciles the competing needs of urban development and conservation.The framework and the policy insights derived in this study could inform spatial planning efforts not only in Wuhan but also in other cities facing the dilemma of urban development and ecological protection.展开更多
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition...As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.展开更多
A strong urban heat island (UHI) appeared in a hot weather episode in Suzhou City during the period from 25 July to 1 August 2007. This paper analyzes the urban heat island characteristics of Suzhou City under this ...A strong urban heat island (UHI) appeared in a hot weather episode in Suzhou City during the period from 25 July to 1 August 2007. This paper analyzes the urban heat island characteristics of Suzhou City under this hot weather episode. Both meteorological station observations and MODIS satellite observations show a strong urban heat island in this area. The maximum UHI intensity in this hot weather episode is 2.2℃, which is much greater than the summer average of 1.0℃ in this year and the 37–year (from 1970 to 2006) average of 0.35℃. The Weather Research and Forecasting (WRF) model simulation results demonstrate that the rapid urbanization processes in this area will enhance the UHI in intensity, horizontal distribution, and vertical extension. The UHI spatial distribution expands as the urban size increases. The vertical extension of UHI in the afternoon increases about 50 m higher under the year 2006 urban land cover than that under the 1986 urban land cover. The conversion from rural land use to urban land type also strengthens the local lake-land breeze circulations in this area and modifies the vertical wind speed field.展开更多
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night tim...An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.展开更多
Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy ...Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments areperformed to investigate the effects of urban influence, surrounding terrain, and different extentof urbanization on urban boundary layer structures over Beijing area. The results of factorseparation experiments of urban influence indicate that the total effect of urban influence, whichis the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, isresponsible for the formation of main UBL features over Beijing area. Meanwhile, the relativeimportance of thermal and mechanical factors of urban infrastructure and interaction between thermaland mechanical factors for the formation and evolution of UBL over the Beijing area are alsoexplored. The results show that, during nighttime, mechanical factors are responsible for maincharacteristics of nocturnal urban boundary layer such as elevated inversion layer over downtownarea, smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak atthe top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structureof UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area.The interaction between mechanical and thermal factors plays an important role in the formation andevolution of UBL, but its specific characteristics of mechanisms are complex. The results ofsurrounding terrain experiment show that terrain surrounding Beijing area not only determines thecharacteristic of prevailing airflow over Beijing area, but also has obvious effect on thermalstructure of UBL, such as the distribution of elevated inversion and urban heat island, and makesthem with special localization feature. The results of different extent urbanization experiment showthat with the increase in the density and height of buildings in Beijing area, wind speed woulddecrease and TKE increase. Meanwhile, the bottom of nocturnal elevated inversion would increase indowntown area, and the intensity of urban heat island would strengthen, and even probably is obviousin the daytime.展开更多
A two-layer model based on the linearized time-independent atmospheric dynamical equations is proposed in this paper. The analytical solutions of the vertical, the horizontal motions and the potential temperature fiel...A two-layer model based on the linearized time-independent atmospheric dynamical equations is proposed in this paper. The analytical solutions of the vertical, the horizontal motions and the potential temperature field induced by the anthropogenic source of urban surface heating are obtained, therefore the heat island circulation existing in unstable boundary layer is verified theoretically. From the analytical solutions, some conclusions can be drawn. (1) The vertical motion induced by urban heat island consists of two parts, namely, the cross-hill wave and the lee wave; (2) The cross-hill wave only exists in the unstable boundary layer, and varies with height according to exponential function law; (3) The vertical motion induced by heat island reaches the maximum at the top of the unstable boundary layer; (4) The wave generated by heat island not only propogates to the downwind district but also travels to the upwind area; (5) γ≠0 is not the necessary condition of the lee wave generation.展开更多
The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aimin...The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.展开更多
The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land i...The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.展开更多
Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for ...Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.展开更多
Urban agglomeration is the main spatial organization mode used by the Chinese government to promote the policy of new urbanization strategy.Hence,a better understanding of the urban growth boundary(UGB)has profound th...Urban agglomeration is the main spatial organization mode used by the Chinese government to promote the policy of new urbanization strategy.Hence,a better understanding of the urban growth boundary(UGB)has profound theoretical and practical significance regarding sustainable urban development.This study devised a raster-based land use spatial optimization(LUSO)framework,and utilized ant colony optimization(ACO)algorithm to delimit the smart growth boundaries of the Changsha-Zhuzhou-Xiangtan city group(CZTCG)in China.The aim of this study is to design a LUSO model to explore an optimal pattern of urban agglomeration for sustainable growth.Multi growth scenario including a single development center,multipolar development and balanced development patterns are generated by the LUSO model for the year of 2050,and the optimum spatial pattern is chosen based on objectives comparison and the present stage of economic and social development in CZTCG.The main results are listed as the following.1)It is feasible to identify the growth boundaries of the urban agglomeration using the land use spatial optimization model,and the optimal form of the spatial pattern can be defined.2)With the growth trend of the urban agglomeration gradually spreads from a single center to multi-centers and even small towns,the total optimization target performance gradually increases,which means that the traditional pie-shaped development does not meet the maximum comprehensive benefit of the city group.3)Subject to the regional social and economic development stage,absolute fair development or simply developing the central city is not conducive to promoting the coordinated development of the urban agglomeration.Gradient equalization and gradual advancement are the best choice for UGB delineation of urban agglomeration.The findings of this study would be useful to identify the UGB in CZTCG for more sustainable urban development in the future.展开更多
This paper reviews the economic methodology used to justify a proposed 357 hectare (800 acre) Industrial Park that would breach the Urban Development Boundary (UDB) in Miami-Dade County, Florida, a boundary that had b...This paper reviews the economic methodology used to justify a proposed 357 hectare (800 acre) Industrial Park that would breach the Urban Development Boundary (UDB) in Miami-Dade County, Florida, a boundary that had been established to constrain urban sprawl and protect the surrounding wetlands and farmlands. We will examine the socio-economic setting of the region, the ownership of the farmland parcels designated to become industrial sites, and the misuse of the promoters’ narrow economic analysis. Then we shall explain and compute correctly the likely job creation based on the author’s own survey of recently constructed industrial plants similar to those proposed for this site. Rather than an industrial park, we offer instead a newly-designed multi-purpose Recreational–Ecological–Agricultural Park (REAP) & Nature Preserve which would maintain the integrity of the rural landscape, connect the densely-populated neighborhoods to the mangrove shoreline, and open nature’s treasure chest to urban Miami and the wider public.展开更多
An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate...An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.展开更多
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Be...Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.展开更多
Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were i...Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were investigated.As a result of the total vehicle control policy from 2011 in Beijing,the growth rate of annual total CO_(2) flux at 140 m is 7.8% from 2008-2010 but 2.3%from 2010-2012.With the minimum vegetation cover and largest population density,the 5-yr average annual total CO_(2) flux at 140 m is largest(6.41 kg C m^(−2) yr^(−1)),compared with that at 47 m(5.78 kg C m^(−2) yr^(−1))and 280 m(3.99 kg C m^(−2) yr^(−1)).With regards to annual total CO_(2) fluxes in Beijing,vehicle numbers and population are the main controlling factors.The measured CO_(2) fluxes were highly dependent on land cover/use in the prevailing wind direction.The CO_(2) fluxes at three layers all correlated positively with road fraction,with the R2 values being 0.69,0.57,and 0.54(P<0.05),respectively.The decreasing fraction of vegetation caused an increasing of the annual total CO_(2) flux,and there was an exponential relationship between them.The annual total CO_(2) fluxes were larger with higher population density.展开更多
In this work, it is investigated the Urban Heat Island (UHI) using conservative thermodynamic variables observed by surface weather stations on the Metropolitan Area of Porto (Oporto) in Portugal, under adiabatic cond...In this work, it is investigated the Urban Heat Island (UHI) using conservative thermodynamic variables observed by surface weather stations on the Metropolitan Area of Porto (Oporto) in Portugal, under adiabatic conditions at the surface. These conditions are usually present and associated with the development of a mixture layer into the diurnal Convective Boundary Layer (CBL), which residual layer in the late afternoon defines the initial state for the development of the nocturnal UHI. Both the spatial structure and temporal variation of potential temperature and specific humidity were considered, along the hours and days of the year, from a statistical point of view, resulting in hourly climatology. Details of the hourly evolution of the meteorological variables on the Oporto surface are presented and discussed. Results show a seasonal variation of the potential temperature up to 17°C throughout the year, which is associated with horizontal thermal gradients that can control and trigger mesoscale circulations such as sea-land, urban and valley-mountain breezes.展开更多
Urban growth boundary(UGB)is a regulatory measure of local government for delineating limits of urban growth over a period of time.Land within the UGB allows urban development,while the land outside of this boundary r...Urban growth boundary(UGB)is a regulatory measure of local government for delineating limits of urban growth over a period of time.Land within the UGB allows urban development,while the land outside of this boundary remains primarily non-urban.The increasing popularity of UGB demands an easy and effective method to design this boundary.This article introduces a new concept,Ideal Urban Radial Proximity(IURP),to designate a spatial UGB using geoinformatics in the digital environment.The Kolkata urban agglomeration was considered to demonstrate this model.Remotely sensed imageries of three temporal instants(years 1975,1990 and 2005)were considered to determine the information on urban extent and growth of the city.These data were then used as inputs to model the UGB for the years 2020 and 2035.The proposed model discourages scattered development and increase in urban growth rate.It preserves urban vegetation,water bodies and any other important non-urban areas within the inner city space.The IURP concept will also be useful to make the cities circular and polycentric urban blobs into a monocentric tract.Apart from the proposed model and derived results,this research also proves the potential of geoinformatics in modelling a UGB.展开更多
Delimitation of an urban growth boundary(UGB)can effectively curb disorderly urban expansion,optimize urban development space and protect the ecological environment.Eco-environmental sensitivity was evaluated and area...Delimitation of an urban growth boundary(UGB)can effectively curb disorderly urban expansion,optimize urban development space and protect the ecological environment.Eco-environmental sensitivity was evaluated and areas prohibiting construction expansion were extracted by establishing an index system.Point of interest(POI)and microblog data were utilized to analyze the expansion of residential activity space.Urban space expansion potential was calculated using a comprehensive evaluation model,and an urban growth boundary for Jinan in 2020 was delimited combining the predicted urban expansion scale.The results showed that:(1)An evaluation of eco-environmental sensitivity can effectively protect ecological land and provide an ecological basis for urban expansion.Regions with high eco-environmental sensitivities in Jinan are located along the banks of the Yellow River and Xiaoqing River and in southeast mountainous areas,but eco-environmental sensitivities in the central,north and southeast areas are relatively low;(2)The model to evaluate urban residential activity expansion can quantify the spatial distribution of urban residents’activities.Regions with high potential for residential activity space expansion in Jinan are mainly concentrated in the middle of Jinan and most are part of existing built-up areas and surrounding areas;(3)The method that delimits urban growth boundaries based on the coordination of ecology and residential activity space is reasonable.Spatial expansion in Jinan mainly extends towards the east and west wings,and the boundary conforms to the spatial strategy guiding Jinan’s development and is consistent with the overall layout in related plans.Considering both ecological protection and the internal forces driving urban expansion,the method of urban growth boundary delimitation used in this study can provide a reference and practical help for studies and management of urban development in the new era.展开更多
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金funded by the National Basic Research Program of China (Grant No.2014CB447900)Xiaofeng GUO acknowledges the support of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences (Grant No.LAPC-KF-2009-02)
文摘Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.
基金supported by the Humanities and Social Sciences Program of Jiangxi Universities(Grant No.GL21129)the Graduate Student Innovation Fund Program of Gannan Normal University(Grant No.YCX23A043)the Open Subject of Geography Discipline Construction of Gannan Normal University(Grant No.200084).
文摘With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.
基金National Natural Science Foundation of China,No.72174071。
文摘The strategic delineation of the urban development boundary(UDB)is an effective initiative for efficient land resource allocation and for facilitating planned urban development.To align with sustainable development objectives,UDB definitions have evolved to reconcile urban development with ecological preservation.This study presents a UDB delineation framework from an integrated perspective that incorporates both demand-oriented and comprehensive constraints.Specifically,the urban construction land demand area was estimated based on population projections,meanwhile,the ecological red line(ERL)was delineated and integrated into the evaluation of the construction land suitability.Subsequently,with the demand area as the simulation target and unsuitable areas as comprehensive constraints,the UDB was delineated by simulating future land use patterns.The proposed framework was applied to Wuhan,a rapidly urbanizing city in central China,where the delineation of the UDB serves the dual purpose of managing the rapid expansion of built-up land and achieving a harmonious balance between urban development imperatives and ecological protection goals.Moreover,based on the results and analysis,policy implications for the rational spatial planning of Wuhan were proposed,encompassing the spatial patterns and scientific decision-making in ecological conservation and urban development.The results demonstrate that the efficacy of adopting a comprehensive perspective in delineating UDB effectively reconciles the competing needs of urban development and conservation.The framework and the policy insights derived in this study could inform spatial planning efforts not only in Wuhan but also in other cities facing the dilemma of urban development and ecological protection.
基金financially supported by the National Key R&D Program of China (2022YFC3700400&2022YFB3901700)。
文摘As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.
基金sponsored by the National Basic Research Program of China (2010CB428501 and 2011CB952002)National Natural Science Foundation of China (Grant No. 41005008)
文摘A strong urban heat island (UHI) appeared in a hot weather episode in Suzhou City during the period from 25 July to 1 August 2007. This paper analyzes the urban heat island characteristics of Suzhou City under this hot weather episode. Both meteorological station observations and MODIS satellite observations show a strong urban heat island in this area. The maximum UHI intensity in this hot weather episode is 2.2℃, which is much greater than the summer average of 1.0℃ in this year and the 37–year (from 1970 to 2006) average of 0.35℃. The Weather Research and Forecasting (WRF) model simulation results demonstrate that the rapid urbanization processes in this area will enhance the UHI in intensity, horizontal distribution, and vertical extension. The UHI spatial distribution expands as the urban size increases. The vertical extension of UHI in the afternoon increases about 50 m higher under the year 2006 urban land cover than that under the 1986 urban land cover. The conversion from rural land use to urban land type also strengthens the local lake-land breeze circulations in this area and modifies the vertical wind speed field.
基金Supportly by the National Natural Science Foundation of China under Grant No. 40333027
文摘An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.
基金Supported by the Beijing Urban Environment Project (973 Project).
文摘Based on the successful simulation of a typical winter urban boundary layer(UBL) process over Beijing area during the Beijing City Air Pollution Experiment (BECAPEX) in 2001by the use of MM5 coupled with urban canopy parameterization, a series of simulation experiments areperformed to investigate the effects of urban influence, surrounding terrain, and different extentof urbanization on urban boundary layer structures over Beijing area. The results of factorseparation experiments of urban influence indicate that the total effect of urban influence, whichis the synthetic effect of urban infrastructure on thermal and dynamic structures of atmosphere, isresponsible for the formation of main UBL features over Beijing area. Meanwhile, the relativeimportance of thermal and mechanical factors of urban infrastructure and interaction between thermaland mechanical factors for the formation and evolution of UBL over the Beijing area are alsoexplored. The results show that, during nighttime, mechanical factors are responsible for maincharacteristics of nocturnal urban boundary layer such as elevated inversion layer over downtownarea, smaller wind speed and stronger turbulent kinetic energy (TKE) and its behavior with peak atthe top of canopy layer, whereas in the daytime, thermal factors play dominant role in the structureof UBL, such as the intensity of mixed layer and temperature in the lower atmosphere in urban area.The interaction between mechanical and thermal factors plays an important role in the formation andevolution of UBL, but its specific characteristics of mechanisms are complex. The results ofsurrounding terrain experiment show that terrain surrounding Beijing area not only determines thecharacteristic of prevailing airflow over Beijing area, but also has obvious effect on thermalstructure of UBL, such as the distribution of elevated inversion and urban heat island, and makesthem with special localization feature. The results of different extent urbanization experiment showthat with the increase in the density and height of buildings in Beijing area, wind speed woulddecrease and TKE increase. Meanwhile, the bottom of nocturnal elevated inversion would increase indowntown area, and the intensity of urban heat island would strengthen, and even probably is obviousin the daytime.
文摘A two-layer model based on the linearized time-independent atmospheric dynamical equations is proposed in this paper. The analytical solutions of the vertical, the horizontal motions and the potential temperature field induced by the anthropogenic source of urban surface heating are obtained, therefore the heat island circulation existing in unstable boundary layer is verified theoretically. From the analytical solutions, some conclusions can be drawn. (1) The vertical motion induced by urban heat island consists of two parts, namely, the cross-hill wave and the lee wave; (2) The cross-hill wave only exists in the unstable boundary layer, and varies with height according to exponential function law; (3) The vertical motion induced by heat island reaches the maximum at the top of the unstable boundary layer; (4) The wave generated by heat island not only propogates to the downwind district but also travels to the upwind area; (5) γ≠0 is not the necessary condition of the lee wave generation.
基金Project(2006BAJ04A13) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan of ChinaProject(2009FJ4056) supported by the Key Project of Science and Technology Program of Hunan Province,ChinaProject(20090161120014) supported by the New Teachers Fund of Department of Education,China
文摘The fuzziness exists in spatial distribution of geographic data of land suitability evaluation processes,which makes it difficult to quantify land boundaries by using traditional binary logic-based overlay model.Aiming at this limitation,an ecological suitability evaluation analysis model was presented based on fuzzy theory and a research on urban growth boundary(UGB) of the Great-Hexi Leading District(GHLD) of Changsha was conducted.With the support of GIS,RS and MATLAB,slope,elevation,vegetation,soil productivity,soil permeability,water body and land use are selected as the input of model according to the characteristic properties of soil and terrain in red soil hilly areas.The running result of this model indicates that the ratios of highly suitable land,suitable land,moderately suitable land and unsuitable land in GHLD are 18.75%,10.31%,64.16%,6.78%,respectively.This result accords with spatial structure worked out by Space Development Strategy Planning of GHLD,Based on this result,several suggestions are made to guide UGB developments in future.
基金Natural Science Foundation of Hubei Province(No.2021CFB402)Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(No.2020NGCMZD03)。
文摘The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.
基金Under the auspices of National Natural Science Foundation of China (No.42171414,41771429)the Open Fund of Guangdong Enterprise Key Laboratory for Urban SensingMonitoring and Early Warning (No.2020B121202019)。
文摘Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.
基金Under the auspices of National Nature Science Foundation of China(No.41901311)。
文摘Urban agglomeration is the main spatial organization mode used by the Chinese government to promote the policy of new urbanization strategy.Hence,a better understanding of the urban growth boundary(UGB)has profound theoretical and practical significance regarding sustainable urban development.This study devised a raster-based land use spatial optimization(LUSO)framework,and utilized ant colony optimization(ACO)algorithm to delimit the smart growth boundaries of the Changsha-Zhuzhou-Xiangtan city group(CZTCG)in China.The aim of this study is to design a LUSO model to explore an optimal pattern of urban agglomeration for sustainable growth.Multi growth scenario including a single development center,multipolar development and balanced development patterns are generated by the LUSO model for the year of 2050,and the optimum spatial pattern is chosen based on objectives comparison and the present stage of economic and social development in CZTCG.The main results are listed as the following.1)It is feasible to identify the growth boundaries of the urban agglomeration using the land use spatial optimization model,and the optimal form of the spatial pattern can be defined.2)With the growth trend of the urban agglomeration gradually spreads from a single center to multi-centers and even small towns,the total optimization target performance gradually increases,which means that the traditional pie-shaped development does not meet the maximum comprehensive benefit of the city group.3)Subject to the regional social and economic development stage,absolute fair development or simply developing the central city is not conducive to promoting the coordinated development of the urban agglomeration.Gradient equalization and gradual advancement are the best choice for UGB delineation of urban agglomeration.The findings of this study would be useful to identify the UGB in CZTCG for more sustainable urban development in the future.
文摘This paper reviews the economic methodology used to justify a proposed 357 hectare (800 acre) Industrial Park that would breach the Urban Development Boundary (UDB) in Miami-Dade County, Florida, a boundary that had been established to constrain urban sprawl and protect the surrounding wetlands and farmlands. We will examine the socio-economic setting of the region, the ownership of the farmland parcels designated to become industrial sites, and the misuse of the promoters’ narrow economic analysis. Then we shall explain and compute correctly the likely job creation based on the author’s own survey of recently constructed industrial plants similar to those proposed for this site. Rather than an industrial park, we offer instead a newly-designed multi-purpose Recreational–Ecological–Agricultural Park (REAP) & Nature Preserve which would maintain the integrity of the rural landscape, connect the densely-populated neighborhoods to the mangrove shoreline, and open nature’s treasure chest to urban Miami and the wider public.
基金funded by National Nat-ural Science Foundation of China(Grants Nos.40505002,40652001,and 40775015)Beijing Natural Science Foun-dation(Grant No.8051002)+1 种基金Beijing New Star Project of Science and Technology(Grant No.2005A03)the Ministry of Science and Technology of China(Grant Nos.2008BAC37B04,2006BAJ02A01,and GYHY200906035)
文摘An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.
基金supported by the National Nature Science Foundation of China (Grant Nos. 41275023, 91537212 & 410210040)
文摘Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.
基金funded by the National Key Research and Develop-ment Program of China[grant number 2017YFC1502101]the National Natural Science Foundation of China[grant numbers 41905010 and 41675013].
文摘Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were investigated.As a result of the total vehicle control policy from 2011 in Beijing,the growth rate of annual total CO_(2) flux at 140 m is 7.8% from 2008-2010 but 2.3%from 2010-2012.With the minimum vegetation cover and largest population density,the 5-yr average annual total CO_(2) flux at 140 m is largest(6.41 kg C m^(−2) yr^(−1)),compared with that at 47 m(5.78 kg C m^(−2) yr^(−1))and 280 m(3.99 kg C m^(−2) yr^(−1)).With regards to annual total CO_(2) fluxes in Beijing,vehicle numbers and population are the main controlling factors.The measured CO_(2) fluxes were highly dependent on land cover/use in the prevailing wind direction.The CO_(2) fluxes at three layers all correlated positively with road fraction,with the R2 values being 0.69,0.57,and 0.54(P<0.05),respectively.The decreasing fraction of vegetation caused an increasing of the annual total CO_(2) flux,and there was an exponential relationship between them.The annual total CO_(2) fluxes were larger with higher population density.
文摘In this work, it is investigated the Urban Heat Island (UHI) using conservative thermodynamic variables observed by surface weather stations on the Metropolitan Area of Porto (Oporto) in Portugal, under adiabatic conditions at the surface. These conditions are usually present and associated with the development of a mixture layer into the diurnal Convective Boundary Layer (CBL), which residual layer in the late afternoon defines the initial state for the development of the nocturnal UHI. Both the spatial structure and temporal variation of potential temperature and specific humidity were considered, along the hours and days of the year, from a statistical point of view, resulting in hourly climatology. Details of the hourly evolution of the meteorological variables on the Oporto surface are presented and discussed. Results show a seasonal variation of the potential temperature up to 17°C throughout the year, which is associated with horizontal thermal gradients that can control and trigger mesoscale circulations such as sea-land, urban and valley-mountain breezes.
文摘Urban growth boundary(UGB)is a regulatory measure of local government for delineating limits of urban growth over a period of time.Land within the UGB allows urban development,while the land outside of this boundary remains primarily non-urban.The increasing popularity of UGB demands an easy and effective method to design this boundary.This article introduces a new concept,Ideal Urban Radial Proximity(IURP),to designate a spatial UGB using geoinformatics in the digital environment.The Kolkata urban agglomeration was considered to demonstrate this model.Remotely sensed imageries of three temporal instants(years 1975,1990 and 2005)were considered to determine the information on urban extent and growth of the city.These data were then used as inputs to model the UGB for the years 2020 and 2035.The proposed model discourages scattered development and increase in urban growth rate.It preserves urban vegetation,water bodies and any other important non-urban areas within the inner city space.The IURP concept will also be useful to make the cities circular and polycentric urban blobs into a monocentric tract.Apart from the proposed model and derived results,this research also proves the potential of geoinformatics in modelling a UGB.
基金National Natural Science Foundation of China(41430861)
文摘Delimitation of an urban growth boundary(UGB)can effectively curb disorderly urban expansion,optimize urban development space and protect the ecological environment.Eco-environmental sensitivity was evaluated and areas prohibiting construction expansion were extracted by establishing an index system.Point of interest(POI)and microblog data were utilized to analyze the expansion of residential activity space.Urban space expansion potential was calculated using a comprehensive evaluation model,and an urban growth boundary for Jinan in 2020 was delimited combining the predicted urban expansion scale.The results showed that:(1)An evaluation of eco-environmental sensitivity can effectively protect ecological land and provide an ecological basis for urban expansion.Regions with high eco-environmental sensitivities in Jinan are located along the banks of the Yellow River and Xiaoqing River and in southeast mountainous areas,but eco-environmental sensitivities in the central,north and southeast areas are relatively low;(2)The model to evaluate urban residential activity expansion can quantify the spatial distribution of urban residents’activities.Regions with high potential for residential activity space expansion in Jinan are mainly concentrated in the middle of Jinan and most are part of existing built-up areas and surrounding areas;(3)The method that delimits urban growth boundaries based on the coordination of ecology and residential activity space is reasonable.Spatial expansion in Jinan mainly extends towards the east and west wings,and the boundary conforms to the spatial strategy guiding Jinan’s development and is consistent with the overall layout in related plans.Considering both ecological protection and the internal forces driving urban expansion,the method of urban growth boundary delimitation used in this study can provide a reference and practical help for studies and management of urban development in the new era.