期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model 被引量:6
1
作者 Ya GAO Zhanyong WANG +3 位作者 Qing-Chang LU Chao LIU Zhong-Ren PENG Yue YU 《Frontiers of Earth Science》 SCIE CAS CSCD 2017年第2期347-360,共14页
A study on vertical variation of PM2.5 concentrations was carried out in this paper. Field measurements were conducted at eight different floor heights outside a building alongside a typical elevated expressway in dow... A study on vertical variation of PM2.5 concentrations was carried out in this paper. Field measurements were conducted at eight different floor heights outside a building alongside a typical elevated expressway in downtown Shanghai, China. Results show that PM2.5 concentration decreases significantly with the increase of height from the 3rd to 7th floor or the 8th to 15th floor, and increases suddenly from the 7th to 8th floor which is the same height as the elevated expressway. A non-parametric test indicates that the data of PM2.5 concentration is statistically different under the 7th floor and above the 8th floor at the 5% significance level. To investigate the relationships between PM2.5 concentration and influencing factors, the Pearson correlation analysis was performed and the results indicate that both traffic and meteorological factors have crucial impacts on the variation of PM2.5 concentration, but there is a rather large variation in correlation coefficients under the 7th floor and above the 8th floor. Furthermore, the back propagation neural network based on principal component analysis (PCA-BPNN), as well as generalized additive model (GAM), was applied to predict the vertical PM2.5 concentration and examined with the field measurement dataset. Experimental results indicated that both models can obtain accurate predictions, while PCA-BPNN model provides more reliable and accurate predictions as it can reduce the complexity and eliminate data co-linearity. These findings reveal the vertical distribution of PM2.5 concentration and the potential of the proposed model to be applicable to predict the vertical trends of air pollution in similar situations. 展开更多
关键词 vertical variations principal component ana-lysis back propagation neural network generalized additivemodel urban elevated expressway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部