Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as inten...Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.展开更多
The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol...The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...展开更多
Due to the dual dris oftural and man-made factors, relative sea leverise in China's coastal plains can be 2 to 3 times over the global mean dunng thefirst half of the 21st Century, it will strongly whuence the van...Due to the dual dris oftural and man-made factors, relative sea leverise in China's coastal plains can be 2 to 3 times over the global mean dunng thefirst half of the 21st Century, it will strongly whuence the vanous coastal projectsand installations and the development of coastal dhes and towns. Research resultsshow that a 50-cm-nse in relative sea leve will cause maed decline in the functionof coastal defense and drainage projects and seriously endangur the functionalworking of the vast majority of coastal harbors. Meanwhile, it will also whuence thedevelopment of coastal dhes and towns throwi deterioratin water quality of thesource of urban water supply, increasing urban fiood risk and damagin seasidetounst resources etc.. Tianin, Shanghai and Guangzhou, the three most importancoastal dhes of China, will be Strongly affeded.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.42001025 and 42001014)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2021491211)the Natural Science Foundation of Ningbo Municipality(Grant No.2023J133).
文摘Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.
文摘The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...
文摘Due to the dual dris oftural and man-made factors, relative sea leverise in China's coastal plains can be 2 to 3 times over the global mean dunng thefirst half of the 21st Century, it will strongly whuence the vanous coastal projectsand installations and the development of coastal dhes and towns. Research resultsshow that a 50-cm-nse in relative sea leve will cause maed decline in the functionof coastal defense and drainage projects and seriously endangur the functionalworking of the vast majority of coastal harbors. Meanwhile, it will also whuence thedevelopment of coastal dhes and towns throwi deterioratin water quality of thesource of urban water supply, increasing urban fiood risk and damagin seasidetounst resources etc.. Tianin, Shanghai and Guangzhou, the three most importancoastal dhes of China, will be Strongly affeded.