The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteris...The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteristics of groundwater in Luoyang City from the aspects of the division of groundwater aquifer groups,water yield property and groundwater dynamics were described in this paper.Two emergency water sources were selected on basis of comprehensively considering groundwater resources and ecological environmental effects,groundwater quality and exploitation technology,etc.Then it further analysed the aquifer types,water yield properties and groundwater recharge,runoff and discharge conditions of the two emergency water sources,and evaluate the groundwater resources quantity of the water sources.The results are that the shallow underground aquifer in Luoyang City is thick,coarse,and stable in lithology and thickness.The two water sources enjoy good exploitation potential and can be used as backup water sources to supply water in the event of a water source crisis.展开更多
Groundwater is an essential source of drinking water for many Indian urban habitats. Large numbers of people consume ground water instead of municipal tap water due to contamination of tap water. Groundwater is extrac...Groundwater is an essential source of drinking water for many Indian urban habitats. Large numbers of people consume ground water instead of municipal tap water due to contamination of tap water. Groundwater is extracted from thousands of bore wells, and used for potable purpose without proper testing and treatment. This paper describes a groundwater quality monitoring strategy and database model developed for Gulbarga city, located in Karnataka, India. Sampling wells are selected one each in 55 wards of the city corporation having easy access for regular sampling. Various attributes of sampling wells including their spatial coordinates, location address and a photograph are registered for ready recognition on site. Water samples are collected and analyzed for various physico-chemical parameters. Spatial coordinates and levels of sampling points are measured on site using a hand held GPS instrument. Gulbarga city map is digitized. A GIS database of the measured spatial and water quality data is developed using ArcGIS Desktop 9.3, and ground water quality maps are prepared which may serve as useful tools for developing policy, and regulatory mechanism for sustainable groundwater use.展开更多
Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biologica...Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biological properties. This study investigates the suitability of groundwater for domestic and irrigational purposes through physico-chemical and bacteriological analyses in the Northern part of Bamenda Town (Cameroon). Thus, 20 groundwater samples were collected from hand-dug wells and spring sources in September 2018 (rainy season) and February 2019 (dry season) and physico-chemical and bacteriological characteristics were determined. The results revealed that pH ranged from 5.5 to 6.6, thus enabling the classification of the water as slightly acidic. Electrical conductivity varied between 0.01 - 0.06 μS/cm. The relative abundance of ions was such that Ca<sup>2+</sup> > K<sup>+</sup> > Mg<sup>2+</sup> > Na<sup>+</sup> for cations and <span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > Cl<sup>-</sup> > <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > <span style="white-space:nowrap;">SO<sup>-</sup><sub style="margin-left:-7px;">4</sub></span> for anions. The water types were Ca-Mg-NO<sub>3</sub> in both dry and rainy seasons. The results revealed that the mechanisms controlling groundwater chemistry are rock weathering and atmospheric precipitation. Indicator bacteria such as <em>E. coli</em>, <em>Shigella</em>, <em>Enterobacteria</em>, <em>Vibrio</em>, <em>Streptococcus</em> and <em>Staphylococcus</em> were detected in the studied groundwater samples, thus the water sources may pose a threat to public health.展开更多
This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and ...This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and the 2nd generation processes in 1970s - advanced treatment processes, a tertiary processes - UF (ultrafiltration) based on integrated processes was proposed. Moreover, reaction measures (dosing variety of regents for different contaminants) for urban source water emergencies were illustrated in brief. A new technology of KMnO4 and potassium permanganate composite (PPC) for drinking water purification which was developed by Harbin Institute of Technology (HIT) was concisely introduced.展开更多
The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces,...The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of fiver 〉 lake/reservoir 〉 groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.展开更多
The degradation of water source environment becomes serious problems accompanying with rapid urbanization in China. Ecological engineering provides ecologically sound and cost effective solution to solving this proble...The degradation of water source environment becomes serious problems accompanying with rapid urbanization in China. Ecological engineering provides ecologically sound and cost effective solution to solving this problem. As a case study, a 15 hm 2 ecological water storage basin for a water plant was designed and constructed on the TEDA area in Tianjin City. Located on saline, the construction of this project has to face serious difficulties, such as high salinity, scarce seed banks of macrophytes, and strong winds. Freshwater replacement, soil amendation and macrophytes planting at the basinshore, wooden water breaker and plastic membrane installation and other measures were conducted for the assistance of plant community establishment. The result showed that the chloride concentration in the basin water decreased from 11600 mg/L to less than 100 mg/L, and the chloride content in the basin sediment decreased from 2 1% to 0 35% after freshwater soaking. The introduced macrophytes of 8 species all survived and 11 other macrophytes species were occurred in the basin. A new ecosystem was created with increased biological diversity in the original saline, and the water quality was improved. This ecological water storage basin also provided a pleasing landscape for local people.展开更多
Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity ...Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity due to both water shortages and poor water quality.Ensuring safe and clean drinking water is a great challenge and top priority,especially for China with 1.4 billion people.In China,more than 4000 centralized drinking water sources including rivers,lakes and reservoirs,and groundwater have been established to serve urban residents.However,there is little knowledge on the percentage,serving population and water quality of three centralized drinking water source types.We collected nationwide centralized drinking water sources data and serving population data covering 395 prefecture-level and county-level cities and water quality data in the two most populous provinces(Guangdong and Shandong)to examine their contribution and importance.Geographically,the drinking water source types can be classified into three clear regions exhibiting apparent differences in the respective contributions of rivers,lakes and reservoirs,and groundwater.We further found that overall,lakes and reservoirs account for 40.6%of the centralized drinking water sources vs.river(30.8%)and groundwater(28.6%)in China.Lakes and reservoirs are particularly important in the densely populated eastern region,where they are used as drinking water sources by 51.0%of the population(318 million).Moreover,the contribution to the drinking water supply from lakes and reservoirs is increasing due to their better water quality and many cross-regional water transfer projects.These results will be useful for the government to improve and optimize the establishment of centralized drinking water sources,which provide safe and clean drinking water in China to safeguard people's lives and health and realize sustainable development goals.展开更多
Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close rela...Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.展开更多
基金The study was supported by the China Geological Survey Geological Survey Project(12120113004600).
文摘The construction of emergency water sources is the material basis for ensuring urban water safety,and it is also an inherent requirement for maintaining social stability and development.The hydrogeological characteristics of groundwater in Luoyang City from the aspects of the division of groundwater aquifer groups,water yield property and groundwater dynamics were described in this paper.Two emergency water sources were selected on basis of comprehensively considering groundwater resources and ecological environmental effects,groundwater quality and exploitation technology,etc.Then it further analysed the aquifer types,water yield properties and groundwater recharge,runoff and discharge conditions of the two emergency water sources,and evaluate the groundwater resources quantity of the water sources.The results are that the shallow underground aquifer in Luoyang City is thick,coarse,and stable in lithology and thickness.The two water sources enjoy good exploitation potential and can be used as backup water sources to supply water in the event of a water source crisis.
文摘Groundwater is an essential source of drinking water for many Indian urban habitats. Large numbers of people consume ground water instead of municipal tap water due to contamination of tap water. Groundwater is extracted from thousands of bore wells, and used for potable purpose without proper testing and treatment. This paper describes a groundwater quality monitoring strategy and database model developed for Gulbarga city, located in Karnataka, India. Sampling wells are selected one each in 55 wards of the city corporation having easy access for regular sampling. Various attributes of sampling wells including their spatial coordinates, location address and a photograph are registered for ready recognition on site. Water samples are collected and analyzed for various physico-chemical parameters. Spatial coordinates and levels of sampling points are measured on site using a hand held GPS instrument. Gulbarga city map is digitized. A GIS database of the measured spatial and water quality data is developed using ArcGIS Desktop 9.3, and ground water quality maps are prepared which may serve as useful tools for developing policy, and regulatory mechanism for sustainable groundwater use.
文摘Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biological properties. This study investigates the suitability of groundwater for domestic and irrigational purposes through physico-chemical and bacteriological analyses in the Northern part of Bamenda Town (Cameroon). Thus, 20 groundwater samples were collected from hand-dug wells and spring sources in September 2018 (rainy season) and February 2019 (dry season) and physico-chemical and bacteriological characteristics were determined. The results revealed that pH ranged from 5.5 to 6.6, thus enabling the classification of the water as slightly acidic. Electrical conductivity varied between 0.01 - 0.06 μS/cm. The relative abundance of ions was such that Ca<sup>2+</sup> > K<sup>+</sup> > Mg<sup>2+</sup> > Na<sup>+</sup> for cations and <span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > Cl<sup>-</sup> > <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > <span style="white-space:nowrap;">SO<sup>-</sup><sub style="margin-left:-7px;">4</sub></span> for anions. The water types were Ca-Mg-NO<sub>3</sub> in both dry and rainy seasons. The results revealed that the mechanisms controlling groundwater chemistry are rock weathering and atmospheric precipitation. Indicator bacteria such as <em>E. coli</em>, <em>Shigella</em>, <em>Enterobacteria</em>, <em>Vibrio</em>, <em>Streptococcus</em> and <em>Staphylococcus</em> were detected in the studied groundwater samples, thus the water sources may pose a threat to public health.
文摘This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and the 2nd generation processes in 1970s - advanced treatment processes, a tertiary processes - UF (ultrafiltration) based on integrated processes was proposed. Moreover, reaction measures (dosing variety of regents for different contaminants) for urban source water emergencies were illustrated in brief. A new technology of KMnO4 and potassium permanganate composite (PPC) for drinking water purification which was developed by Harbin Institute of Technology (HIT) was concisely introduced.
基金supported by the Water Pollution Control and Management (No. 2009ZX07419-002-2,2009ZX07419-003)the International Science and Technology Cooperation Program of China (No.2007DFA90510)
文摘The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of fiver 〉 lake/reservoir 〉 groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.
文摘The degradation of water source environment becomes serious problems accompanying with rapid urbanization in China. Ecological engineering provides ecologically sound and cost effective solution to solving this problem. As a case study, a 15 hm 2 ecological water storage basin for a water plant was designed and constructed on the TEDA area in Tianjin City. Located on saline, the construction of this project has to face serious difficulties, such as high salinity, scarce seed banks of macrophytes, and strong winds. Freshwater replacement, soil amendation and macrophytes planting at the basinshore, wooden water breaker and plastic membrane installation and other measures were conducted for the assistance of plant community establishment. The result showed that the chloride concentration in the basin water decreased from 11600 mg/L to less than 100 mg/L, and the chloride content in the basin sediment decreased from 2 1% to 0 35% after freshwater soaking. The introduced macrophytes of 8 species all survived and 11 other macrophytes species were occurred in the basin. A new ecosystem was created with increased biological diversity in the original saline, and the water quality was improved. This ecological water storage basin also provided a pleasing landscape for local people.
基金supported by the National Natural Science Foundation of China (41790423,41930760,and 41621002)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (QYZDB-SSW-DQC016)Erik Jeppesen was supported by the Tübitak program BIDEB 2232 (project 118C250).
文摘Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity due to both water shortages and poor water quality.Ensuring safe and clean drinking water is a great challenge and top priority,especially for China with 1.4 billion people.In China,more than 4000 centralized drinking water sources including rivers,lakes and reservoirs,and groundwater have been established to serve urban residents.However,there is little knowledge on the percentage,serving population and water quality of three centralized drinking water source types.We collected nationwide centralized drinking water sources data and serving population data covering 395 prefecture-level and county-level cities and water quality data in the two most populous provinces(Guangdong and Shandong)to examine their contribution and importance.Geographically,the drinking water source types can be classified into three clear regions exhibiting apparent differences in the respective contributions of rivers,lakes and reservoirs,and groundwater.We further found that overall,lakes and reservoirs account for 40.6%of the centralized drinking water sources vs.river(30.8%)and groundwater(28.6%)in China.Lakes and reservoirs are particularly important in the densely populated eastern region,where they are used as drinking water sources by 51.0%of the population(318 million).Moreover,the contribution to the drinking water supply from lakes and reservoirs is increasing due to their better water quality and many cross-regional water transfer projects.These results will be useful for the government to improve and optimize the establishment of centralized drinking water sources,which provide safe and clean drinking water in China to safeguard people's lives and health and realize sustainable development goals.
文摘Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.