Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes...Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.展开更多
Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(...Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.展开更多
During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil d...During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.展开更多
The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, how...The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.展开更多
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implicat...By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.展开更多
A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, ...A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological pro...Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological protection,especially for HarbinChangchun urban agglomeration who owns a large number of land used for the protection of agricultural production and ecological function.To alleviate this contradiction and provide insight into future land use patterns under different ecological constraints’scenarios,we introduced the patch-based land use simulation(PLUS)model and simulated urban expansion of the Harbin-Changchun urban agglomeration.After verifying the accuracy of the simulation result in 2018,we predicted future urban expansion under the constraints of three different ecological scenarios in 2026.The morphological spatial pattern analysis(MSPA)method and minimum cumulative resistance(MCR)model were also introduced to identify different levels of ecological security pattern(ESP)as ecological constraints.The predicted result of the optimal protection(OP)scenario showed less proportion of water and forest than those of natural expansion(NE)and basic protection(BP)scenarios in 2026.The conclusions are that the PLUS model can improve the simulation accuracy at urban agglomeration scale compared with other cellular automata(CA)models,and the future urban expansion under OP scenario has the least threat to the ecosystem,while the expansion under the natural expansion(NE)scenario poses the greatest threat to the ecosystem.Combined with the MSPA and MCR methods,PLUS model can also be used in other spatial simulations of urban agglomerations under ecological constraints.展开更多
The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distr...The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distribution of population in the process of urban transformation, resulting in the change of urban spatial structure. Based on the sub-district data of Chinese national population censuses in 1982, 1990 and 2000, this study simulates the evolution pattern of spatial distribution of urban population in Shenyang City. Using statistical method and exploratory spatial data analysis (ESDA), we found that the population distribution, on the whole, has presented a balanced and decentralized trend since the 1980s, which characterizes with Chinese suburbanization. Furthermore, based on the investigation of the pattern of population distribution, it is concluded that the negative exponential model fitted the distribution best, and population concentration in the inner suburb kept increasing gradually, meanwhile, the spatial structure of population distribution has presented a polycentric feature since the 1980s. The parameters of the model show that population in the urban core concentrate significantly all the time. The increase of population in the inner suburb influences the population distribution pattern more and more importantly, but the concentration intensity of population cores in inner suburb is still low.展开更多
Using fractal dimension to reflect and simulate urban morphology are two applications of fractal theory in city geography. As the only consistent description of a fractal, fractal dimension plays an important role in ...Using fractal dimension to reflect and simulate urban morphology are two applications of fractal theory in city geography. As the only consistent description of a fractal, fractal dimension plays an important role in describing the basic features of fractals. Just like other fractals, our cities have similar characteristics. Fractal dimension to some extent is regarded as an indicator of urban expansion, and it may change with urban morphology in different time and space. Based on the Geographic Information System (GIS), taking Wuhan city as a test area, the fractal dimensions of different land use were calculated, and a linear regression equation was established to analyze the relationship between fractal dimension and residential areas. Then the author used fractal dimension to simulate the urban boundary which is an important part of urban mor-phology. A mid-point subdivision fractal generator is needed in the simulation process, and the shape of the generator is determined by fractal dimension. According to the fractal theory, fractal boundaries in different scales have self-similarity and they have the same fractal dimensions. Based on this fact, the simulation method the author used could quantitatively keep the similarity of configuration of the urban boundaries.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June t...This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.展开更多
An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framew...An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.展开更多
Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and pred...Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.展开更多
This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simula...This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.展开更多
The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land i...The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.展开更多
Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as inten...Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.展开更多
The application of unsteady simulation to lightening urban storm waterlogged disaster involves six blocks: the main program, the database of drainage networks, the abstractions and losses block, the calculating inflow...The application of unsteady simulation to lightening urban storm waterlogged disaster involves six blocks: the main program, the database of drainage networks, the abstractions and losses block, the calculating inflow of sewer block, the drainage networks routing block and the waterlogged areas calculating block. This model can be used for simulating sewer surcharge and calculating area and water depth of waterlogged areas under storm conditions. The best design of rebuilding storm sewer system or combined sewer system can be provided by simulating existing state of built drainage pipeline. The model was used for rebuilding Shenyang drainage works last year, and the good results were obtained.展开更多
On the basis of complex adaptive system theory, this paper proposed an agent-based model of old urban residential area, in which, residents and providers are the two adaptive agents. The behaviors of residents and pro...On the basis of complex adaptive system theory, this paper proposed an agent-based model of old urban residential area, in which, residents and providers are the two adaptive agents. The behaviors of residents and providers in this model are trained with back propagation and simulated with Swarm software based on environment-rules-agents interaction. This model simulates the evolution of old urban residential area and analyzes the relations between the evolution and urban management with the background of Chaozhou city. As a result, the following are obtained : ( 1 ) Simulation without government intervention indicates the trend of housing ageing, environmental deterioration, economic depression, and social filtering-down in old urban residential area. If the development of old urban residential area is under control of developers in market, whose desire is profit maximization, and factors such as social justice, historic and culture value will be ignored. (2) If the government carries out some policies and measures which will perfectly serve their original aims, simulation reveals that old urban residential area could be adapted to environment and keep sustainable development. This conclusion emphasizes that government must act as initiator and program maker for guiding residents and other providers directly in the development of old urban residential area.展开更多
文摘Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.
基金Under the auspices of National Natural Science Foundation of China (No. 52268008, 51768001)。
文摘Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.
基金financial supports for this research project by the National Natural Science Foundation of China(Nos.41602308,41967037)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005+1 种基金funded by National Key Research and Development Projects of China(No.2019YFC507502)Guangxi Science and Technology Plan Project(No.RZ2100000161).
文摘During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51708151)。
文摘The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
文摘By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.
基金supported by the Research Fund for Commonweal Trades (Meteorology) (Grants No.GYHY200706037, GYHY (QX) 2007-6-1,GYHY200906007,and GYHY201006038)the National Natural Science Foundation of China (Grants No.50479017 and 40971016)Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0717)
文摘A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金Under the auspices of National Key R&D Program of China(No.2018YFC0704705)。
文摘Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological protection,especially for HarbinChangchun urban agglomeration who owns a large number of land used for the protection of agricultural production and ecological function.To alleviate this contradiction and provide insight into future land use patterns under different ecological constraints’scenarios,we introduced the patch-based land use simulation(PLUS)model and simulated urban expansion of the Harbin-Changchun urban agglomeration.After verifying the accuracy of the simulation result in 2018,we predicted future urban expansion under the constraints of three different ecological scenarios in 2026.The morphological spatial pattern analysis(MSPA)method and minimum cumulative resistance(MCR)model were also introduced to identify different levels of ecological security pattern(ESP)as ecological constraints.The predicted result of the optimal protection(OP)scenario showed less proportion of water and forest than those of natural expansion(NE)and basic protection(BP)scenarios in 2026.The conclusions are that the PLUS model can improve the simulation accuracy at urban agglomeration scale compared with other cellular automata(CA)models,and the future urban expansion under OP scenario has the least threat to the ecosystem,while the expansion under the natural expansion(NE)scenario poses the greatest threat to the ecosystem.Combined with the MSPA and MCR methods,PLUS model can also be used in other spatial simulations of urban agglomerations under ecological constraints.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-342, KZCX2-YW-321-04)National Natural Science Foundation of China (No. 40635030)
文摘The spatial distribution of urban population can reflect significantly urban functions and development status. Shenyang, as a typical old industrial city in China, has experienced considerable changes in spatial distribution of population in the process of urban transformation, resulting in the change of urban spatial structure. Based on the sub-district data of Chinese national population censuses in 1982, 1990 and 2000, this study simulates the evolution pattern of spatial distribution of urban population in Shenyang City. Using statistical method and exploratory spatial data analysis (ESDA), we found that the population distribution, on the whole, has presented a balanced and decentralized trend since the 1980s, which characterizes with Chinese suburbanization. Furthermore, based on the investigation of the pattern of population distribution, it is concluded that the negative exponential model fitted the distribution best, and population concentration in the inner suburb kept increasing gradually, meanwhile, the spatial structure of population distribution has presented a polycentric feature since the 1980s. The parameters of the model show that population in the urban core concentrate significantly all the time. The increase of population in the inner suburb influences the population distribution pattern more and more importantly, but the concentration intensity of population cores in inner suburb is still low.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘Using fractal dimension to reflect and simulate urban morphology are two applications of fractal theory in city geography. As the only consistent description of a fractal, fractal dimension plays an important role in describing the basic features of fractals. Just like other fractals, our cities have similar characteristics. Fractal dimension to some extent is regarded as an indicator of urban expansion, and it may change with urban morphology in different time and space. Based on the Geographic Information System (GIS), taking Wuhan city as a test area, the fractal dimensions of different land use were calculated, and a linear regression equation was established to analyze the relationship between fractal dimension and residential areas. Then the author used fractal dimension to simulate the urban boundary which is an important part of urban mor-phology. A mid-point subdivision fractal generator is needed in the simulation process, and the shape of the generator is determined by fractal dimension. According to the fractal theory, fractal boundaries in different scales have self-similarity and they have the same fractal dimensions. Based on this fact, the simulation method the author used could quantitatively keep the similarity of configuration of the urban boundaries.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金Natural Science Foundation of China(40775068)Specialized Projects of Scientific Research for Public Welfare Industry(Meteorology)+3 种基金Open Projects of Key National Laboratories for Disasters-causing Weather(GYHY200706014GYHY200906026)Science Foundation of China(2009LASW-B03)Foundation for Scientific Research on Tropical and Marine Meteorology
文摘This paper evaluated the performance of a coupled modeling system,Weather Research and Forecasting(WRF)/Urban Canopy Model(UCM),in the simulation of a heat wave event which occurred around Guangzhou during late June through early July,2004.Results from three experiments reveal that the UCM with new land data(hereafter referred to as E-UCM)reproduces the best 2-m temperature evolution and the smallest minimum absolute average error as compared with the other two experiments,the BPA-Bulk Parameterization Approach with new land data(E-BPA)and the UCM with original U.S. Geological Survey land data(E-NOU).The E-UCM is more useful in capturing the temporal and spatial distribution of the nighttime Urban Heat Island(UHI).Differences in surface energy balance between the urban and suburban areas show that low daytime albedo causes more absorption of solar radiation by urban areas.Due to the lack of vegetation which inhibits cooling by evapotranspiration,most of the incoming energy over urban areas is partitioned into sensible heat flux and therefore heats the surface and enhances the heat wave.During nighttime,the energy in the urban area is mainly from soil heat flux.Although some energy is partitioned as outgoing long wave radiation,most of the soil heat flux is partitioned into sensible heat flux due to the small latent heat flux at night.This leads to the development of nighttime UHI and the increase of the magnitude and duration of heat waves within the municipality.
基金It is a part of CERP (Cooperative Ecologioal Research Project) supported by UNESCO.
文摘An interactive simulation model is established based on the methodology of 'sensitivity model' (SM) during the cooperative research process between the founders of SM and the authors. And the conceptual framework of SM is developed into the interactively qualitative and quantitative simulation model presented in this paper, which makes it possible to break down a complex urban ecosystem into simple and visual quantitative or qualitative relationships between the factors. By studying the dynamic responses of the system to the changes of the inputs and parameters of the model, future trends in urban development can be predicted and strategies formulated. The whole process is realized on micro-computer in the course of man-computer interaction. Its potential use is shown in a case of Tianjin City.
基金Under the auspices of the National Natural Science Foundation of China(No.41961027)Key Talents Project of Gansu Province(No.2021RCXM073)Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.
文摘This article uses TM images in 1999 and 2006 in Dahua County,selects the driving factors having great impact on urban land use change,and conducts data processing using GIS software.It then uses CLUE-S model to simulate land use change pattern in 2006,and uses land use map in 2006 to test the simulation results.The results show that the simulation achieves good effect,indicating that we can use CLUE-S model to simulate the future urban land use change in karst areas,to provide scientific decision-making support for sustainable development of land use.
基金Natural Science Foundation of Hubei Province(No.2021CFB402)Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(No.2020NGCMZD03)。
文摘The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.
基金supported by the National Natural Science Foundation of China(Grants No.42001025 and 42001014)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2021491211)the Natural Science Foundation of Ningbo Municipality(Grant No.2023J133).
文摘Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.
文摘The application of unsteady simulation to lightening urban storm waterlogged disaster involves six blocks: the main program, the database of drainage networks, the abstractions and losses block, the calculating inflow of sewer block, the drainage networks routing block and the waterlogged areas calculating block. This model can be used for simulating sewer surcharge and calculating area and water depth of waterlogged areas under storm conditions. The best design of rebuilding storm sewer system or combined sewer system can be provided by simulating existing state of built drainage pipeline. The model was used for rebuilding Shenyang drainage works last year, and the good results were obtained.
基金National Key Science & Technologies Program of China (No.2002BA807B)EU-China Environ-mental Management Cooperation Program (No.EMCP/LMD-02-PURJD)
文摘On the basis of complex adaptive system theory, this paper proposed an agent-based model of old urban residential area, in which, residents and providers are the two adaptive agents. The behaviors of residents and providers in this model are trained with back propagation and simulated with Swarm software based on environment-rules-agents interaction. This model simulates the evolution of old urban residential area and analyzes the relations between the evolution and urban management with the background of Chaozhou city. As a result, the following are obtained : ( 1 ) Simulation without government intervention indicates the trend of housing ageing, environmental deterioration, economic depression, and social filtering-down in old urban residential area. If the development of old urban residential area is under control of developers in market, whose desire is profit maximization, and factors such as social justice, historic and culture value will be ignored. (2) If the government carries out some policies and measures which will perfectly serve their original aims, simulation reveals that old urban residential area could be adapted to environment and keep sustainable development. This conclusion emphasizes that government must act as initiator and program maker for guiding residents and other providers directly in the development of old urban residential area.