期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
1
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Bi-objective optimization models for mitigating traffic congestion in urban road networks
2
作者 Haritha Chellapilla R.Sivanandan +1 位作者 Bhargava Rama Chilukuri Chandrasekharan Rajendran 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第1期86-103,共18页
Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to l... Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to lower the congestion on overutilized links while simultaneously satisfying the system optimal flow assignment for sustainable transportation.Four congestion mitigation strategies are identified based on deviation and relative deviation of link volume from the corresponding capacity.Consequently,four biobjective mathematical programming optimal flow distribution(OFD)models are proposed.The case study results demonstrate that all the proposed models improve system performance and reduce congestion on high volume links by shifting flows to low volumeto-capacity links compared to UE and SO models.Among the models,the system optimality with minimal sum and maximum absolute relative-deviation models(SO-SAR and SO-MAR)showed superior results for different performance measures.The SO-SAR model yielded 50%and 30%fewer links at higher link utilization factors than UE and SO models,respectively.Also,it showed more than 25%improvement in path travel times compared to UE travel time for about 100 paths and resulted in the least network congestion index of1.04 compared to the other OFD and UE models.Conversely,the SO-MAR model yielded the least total distance and total system travel time,resulting in lower fuel consumption and emissions,thus contributing to sustainability.The proposed models contribute towards efficient transportation infrastructure management and will be of interest to transportation planners and traffic managers. 展开更多
关键词 Traffic congestion mitigation SUSTAINABILITY Bi-objective optimization Optimal flow distribution models urban road networks
原文传递
Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling(PLS-SEM) 被引量:8
3
作者 SHA Zongyao XIE Yichun +3 位作者 TAN Xicheng BAI Yongfei LI Jonathan LIU Xuefeng 《Journal of Arid Land》 SCIE CSCD 2017年第4期473-488,共16页
The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associati... The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associations. We applied the variance-based partial least squares SEM(PLS-SEM) and geographically-weighted regression(GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass(AGB). The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia, China. Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction. The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure. The alleviation may be attributable to vegetation adaptation to high human-climate stresses, to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas. Furthermore, the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations. This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems. 展开更多
关键词 spatial modeling human-natural interaction grazing urbanization road network
下载PDF
Assessing the impacts of traffic calming at network level:A multimodal agent-based simulation
4
作者 Eftychia Zargiannaki Panagiotis G.Tzouras +2 位作者 Eleni Antoniou Christos Karolemeas Konstantinos Kepaptsoglou 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第1期41-54,共14页
The reduction of speed limits in urban roads through traffic calming schemes intends to ensure safer traffic conditions among road users by reducing the probability related to the occurrence of severe accident.Looking... The reduction of speed limits in urban roads through traffic calming schemes intends to ensure safer traffic conditions among road users by reducing the probability related to the occurrence of severe accident.Looking it from a different perspective,traffic calming measures can potentially resolve congestion problems at the same time by lowering the overall accessibility and attractiveness of private cars in urban areas.This study proposes a new methodological approach to explore and assess the direct impacts of traffic calming in the transport system efficiency of a metropolitan area.The multi-agent transport simulation(MATSim)and Open-Berlin scenario are utilized to perform this simulation experiment.By developing a new external tool,the free flow speed and road capacity of each network link is updated based on new speed limits and different compliance rates,which are defined per road hierarchy level.The test scenarios that are formulated present radical conditions,where the speed limit in most urban roads of Berlin drops to 30 km/h or even 15 km/h.The findings of this study show a considerably high increase in trips,passenger hours,and passenger kilometers using public transport modes,when traffic calming links are introduced,the reserve change is observed in private cars trips.Although the speed limits are decreased in inner urban roads in most of the scenarios,the decrease of average travel speed of private cars is not so high as it was expected.Surprisingly,private cars are used for longer distances in all test scenarios.Car drivers seem to use already existed motorways and private road to commute.In simulations,driver compliance to the new speed limits seems to be a determinant factor that is strongly influenced by the design interventions applied in a traffic calming area. 展开更多
关键词 Agent-based simulation Traffic calming Impact assessment urban road network
原文传递
An identification model of urban critical links with macroscopic fundamental diagram theory 被引量:2
5
作者 Wanli DONG Yunpeng WANG Haiyang YU 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第1期27-37,共11页
How to identify the critical links of the urban road network for actual traffic management and intelligent trans- portation control is an urgent problem, especially in the con- gestion environment. Most previous metho... How to identify the critical links of the urban road network for actual traffic management and intelligent trans- portation control is an urgent problem, especially in the con- gestion environment. Most previous methods focus on traf- fic static characteristics for traffic planning and design. How- ever, actual traffic management and intelligent control need to identify relevant sections by dynamic traffic information for solving the problems of variable transportation system. Therefore, a city-wide traffic model that consists of three re- lational algorithms, is proposed to identify significant links of the road network by using macroscopic fundamental diagram (MFD) as traffic dynamic characteristics. Firstly, weighted- traffic flow and density extraction algorithm is provided with simulation modeling and regression analysis methods, based on MFD theory. Secondly, critical links identification algo- rithm is designed on the first algorithm, under specified prin- ciples. Finally, threshold algorithm is developed by cluster analysis. In addition, the algorithms are analyzed and applied in the simulation experiment of the road network of the cen- tral district in Hefei city, China. The results show that the model has good maneuverability and improves the shortcom- ings of the threshold judged by human. It provides an ap- proach to identify critical links for actual traffic management and intelligent control, and also gives a new method for eval- uating the planning and design effect of the urban road net- work. 展开更多
关键词 urban road network critical links intelligent transportation system macroscopic fundamental diagram
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部