Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter d...Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.展开更多
In the era of stock development following the acceleration of urbanization,the revitalization of urban green space has assumed an increasingly significant role.Consequently,the management of urban trees has emerged as...In the era of stock development following the acceleration of urbanization,the revitalization of urban green space has assumed an increasingly significant role.Consequently,the management of urban trees has emerged as a critical focus of urban governance,contributing to the enhancement of livability in human settlements.This study offers a comprehensive analysis of the urban tree management system in Oxford,UK,identifying that its primary objective is to optimize and maintain a harmonious balance between human activities and the natural environment through the implementation of high-quality planting practices.The system emphasizes enhanced management practices and establishes a robust framework for the development of targeted policies and management regulations,utilizing i-Tree eco-efficiency assessment and real-time feedback mechanisms.China’s urban tree management is in its nascent stages,and there is an urgent need for the development of urban green space.By adopting the refined management assessment methodologies employed for urban trees in Oxford,UK,it is possible to enhance the ecological value of urban trees,which represent a significant green resource within cities,and contribute to the creation of more livable urban spaces.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollu...Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollution, screening and classification of green land allocation model of PM2.5 reducing greening trees, and made prospect on how to construct the evaluation index system of PM2.5 re- ducing greening trees and urban green land allocation.展开更多
Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’...Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’s mental health and well-being, as well as to achieve ecological understanding and its impact on urban infrastructure. Thus, the aim of the present study is to carry out a survey on both urban afforestation structure and on its social impact on a Brazilian municipality. It also sought to understand the damages caused by these species to urban infrastructure in comparison to data collected in 2009, to assess forest coverage in this municipality and tree planting underutilized capacity. Accordingly, all the streets in this municipality’s urban area, the botanical data of each tree and its damage to the city’s infrastructure and phytosanitary conditions were surveyed (from 1 to 5). Data were compared to those from the 2009 census, and social issues were analyzed. In total, 5044 individuals belonging to 189 species were recorded. The most often found species were Lagerstroemia indica and Murraya paniculata. Out of the total number of trees, 458 trees scored at least one score “5” in one of the criteria, and this number represents 8.9% of the total of the trees. L. indica was the species accounting for the highest rates of phytosanitary and infrastructure issues. Data comparison evidenced that urban tree canopy lost 25% of its vegetation between the two measurements taken herein, but the number of species has increased. When it comes to damages, many trees started showing phytosanitary issues or damage to urban infrastructure.展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
Afforestation has been observed as a green trend in urban areas. The incorporation of trees in urban infrastructure is highly recommended to act as a solution to outlined environmental problems such as global warming....Afforestation has been observed as a green trend in urban areas. The incorporation of trees in urban infrastructure is highly recommended to act as a solution to outlined environmental problems such as global warming. However, it has been precipitously introduced in cities, towns, and metropolitans. The introduction of the green practice was so abrupt that it became devoid to meeting the essential needs for tree growth, thus, failing to bring out the desired effects. Inappropriately selecting and planting trees in urban spaces has resulted in stressed trees that are deficient at reaching up to the calculated goals and in the long run end up being problematic. The main objective of this study is to evaluate the implications of planting southern live oak (Quercus virginiana) trees in the wrong urban space so as to aid in recommending sustainable green solutions for the urban community. By studying southern live oaks planted in Howell Community Park and three randomly selected areas in Southern University Baton Rouge Campus, this study analyzes how the selection of these tree species in the urban spaces influenced their growth and general well-being. These urban spaces were randomly drafted based on accessibility and availability of several southern live oaks. Planting approaches in the four study areas were explored and the general health condition of the trees was determined using the tree appraisal method presented by the i-tree model: my tree. ArcGIS collector was used to collect the GPS coordinates of the trees and ArcMap was used to generate the maps of the study areas. ArcMap software geolocated the coordinates of the southern live oaks in all the four-study areas. The software was used to generate shapefiles of the four study areas and their location in East Baton Rouge. The analysis of the results proved that none of the southern live oaks had an excellent health condition and most of the trees experienced different issues due to planting them in the wrong urban spaces.展开更多
With rapid urbanization occurring throughout China,the existence of Tree Sparrows (Passer montanus) in big cities is likely to be affected by a decrease in habitat and food availability.Can the urban Tree Sparrow adap...With rapid urbanization occurring throughout China,the existence of Tree Sparrows (Passer montanus) in big cities is likely to be affected by a decrease in habitat and food availability.Can the urban Tree Sparrow adapt to these changes? To elucidate this question,we studied the effect of urbanization on the abundance and distribution of Tree Sparrows in Beijing.We found the abundance of the Tree Sparrow negatively correlated with an urbanization score.Sparrow abundance was very low in residential areas with high-rise buildings,commercial centers and main roads,while their numbers were significantly higher in parks,university campuses,low building residential and suburban areas.Environmental factors within the 50 m and 200 m scales were most suitable in predicting the distribution of Tree Sparrows during winter,while factors within 50 m and 400 m scales are suitable during the breeding season.During winter,the number of conifer trees and pedestrians were the major factors at the 50 m scale,while the area of high-rise buildings and vegetation become the predominant factors on a 200 m scale.Alternatively,during the breeding season the area of low buildings and the number of conifers and pedestrians were the main factors on the 50 m scale while the area of high-rise buildings and vegetation remained the most important factors on the 400 m scale.These results indicate that highly urbanized areas are not suitable habitats for the Tree Sparrow,although this species can adapt to human environments.Food and nest sites for urban birds should be considered in urban planning of big cities in developing countries.展开更多
Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and...Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and modulation of evapotranspiration. It also plays an important role filtering urban water systems and reducing storm water runoff.Methods: We investigate the capacity of ALS data to individually detect, map and characterize large(taller than15 m) trees within the City of Vancouver. Large trees are critical for the function and character of Vancouver’s urban forest. We used an object-based approach for individual tree detection and segmentation to determine tree locations(position of the stem), to delineate the shape of the crowns and to categorize the latter either as coniferous or deciduous.Results: Results indicate a detection rate of 76.6% for trees > 15 m with a positioning error of 2.11 m(stem location). Extracted tree heights possessed a RMSE of 2.60 m and a bias of-1.87 m, whereas crown diameter was derived with a RMSE of 3.85 m and a bias of-2.06 m. Missed trees are principally a result of undetected treetops occurring in dense, overlapping canopies with more accurate detection and delineation of trees in open areas.Conclusion: By identifying key structural trees across Vancouver’s urban forests, we can better understand their role in providing ecosystem goods and services for city residents.展开更多
Ecosystem services of urban green spaces play an important role in the sustainable development of the urban ecosystem. How to quantify the ecological benefits of urban green spaces and evaluate their ecological servic...Ecosystem services of urban green spaces play an important role in the sustainable development of the urban ecosystem. How to quantify the ecological benefits of urban green spaces and evaluate their ecological services is a hot topic in related fields. Currently, with the advancement of science and technology, the assessment method has been developed from the traditional ones such as the Council of Tree and Landscape Appraisers(CTLA) method, afforestation cost method, and carbon tax method to CITYgreen and i-Tree. The latter two models have been widely used in countries of Europe and America, while the use of i-Tree has not been promoted in China. In this paper, i-Tree Eco(UFORE) was selected for research, and its application in the assessment of the ecosystem services of urban green spaces, including energy saving, air quality improvement, interception of rainwater, and aesthetic benefits, were analyzed. This study aims to provide a theoretical and scientific basis for the introduction and localization of i-Tree, as well as its generalization in the assessment of forest ecosystem services domestically.展开更多
Urban tree inventory is a great tool for gathering data that can be used by different end users. This study attempted to chart the species diversity in planted areas and measure their tree diameter at breast height to...Urban tree inventory is a great tool for gathering data that can be used by different end users. This study attempted to chart the species diversity in planted areas and measure their tree diameter at breast height to screen them for the carbon storage potential. A total of 2860 trees belonging to 36 species were recorded in the planted vegetation in parks and avenue plantation. The dominant species were Azadirachta indicia (25.5%), Conocarpus erectus (19.2%), Ficus spp. (15.5%), Tabebuia rosea (9.2%), Peitophorum pterocarpum (9.0%) and the remaining represents (21.6%) of the tree identified in this study. It was found that the highest contribution of carbon sequestration (CO<sub>2</sub> equivalent) is dominated by the Ficus spp. (30.3%) with a total of 3399.3 tCO<sub>2</sub>eq, followed by Azadirachta indicia (25.4%) with a total of 2845.2 tCO<sub>2</sub>eq and Conocarpus erectus (20.4%) with a total of 2286 tCO<sub>2</sub>eq. The entire area has the capability to sequester around 11,213.3 tCO<sub>2</sub>eq and on average of 3.9 ± 0.1 tCO<sub>2</sub>eq. In accordance with the findings, it is imperative for the preservation of a sustainable environment to have vegetation that has the capacity to store carbon. The study suggests, there is potential to increase carbon sequestration in urban cities through plantation programs on existing and new land uses and along roads.展开更多
Urban trees are subjected to different damaging agents throughout their lifetime. The aims of this study were to identify tree damaging agents, and to obtain a Damage Severity Index (DSI) in order to categorize tree h...Urban trees are subjected to different damaging agents throughout their lifetime. The aims of this study were to identify tree damaging agents, and to obtain a Damage Severity Index (DSI) in order to categorize tree health condition at San Juan de Aragon Park. Each tree was identified at species level in 28 randomly established plots in ten sections of the study area. Up to two types of damage were recorded per tree, based on the FIA (Forest Inventory an Analysis Program) protocol, and a DSI was obtained for each damaged tree considering location of damage, nature of the damaging agent and severity. A total of 753 trees were assessed and 12 species and 27 damaging agents were identified. Cankers, galls, the pepper tree psyllid and the red gum lerp psyllid were the most frequent damaging agents. Australian pine, red gum, Mediterranean cypress, Mexican white cedar, and California pepper were the most affected species. The DSI ranged from 3 to 17 and the average was 7.9. Sections J and H and the species California pepper, Australian pine, and Mexican white cedar presented the highest DSI. The tree population had a moderate health condition, while the aforementioned sections and tree species showed the poorest.展开更多
This paper first elaborated the purpose of accelerating the greening process,improving the landscape effect,and improving the ecological environment for transplanting large trees to cities. Then,it introduced main pro...This paper first elaborated the purpose of accelerating the greening process,improving the landscape effect,and improving the ecological environment for transplanting large trees to cities. Then,it introduced main problems: destroying the ecological environment of the producing area,damaging the entire ecosystem,increasing the cost of social greening,and seriously wasting forest resources. It analyzed the reasons for these problems,including the imperfect laws and regulations,blind and not scientific transplanting,and eagerness for quick success.Finally,it came up with recommendations including improving policies and regulations,reinforcing technical specifications,and first pseudo planting then field planting,and setting up the overall point of view.展开更多
The accelerating urbanization has brought various problems in environment, land, fund and so on. With the guidance of market economy, economic urban green spaces have become the optimal choice in urban landscaping of ...The accelerating urbanization has brought various problems in environment, land, fund and so on. With the guidance of market economy, economic urban green spaces have become the optimal choice in urban landscaping of China, which can not only improve urban landscapes, ecological environment, satisfy higher spiritual and cultural demands of people, but also create considerable economic benefits, and enhance the coordinated development of economy, society and environment. With Shijiazhuang City as an example, the approaches of constructing economic urban green spaces fit for Shijiazhuang City were analyzed in this study, to provide references for the construction of economic urban green spaces in other cities.展开更多
The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban gr...Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban growth models. Instead of applying a single method to the entire study area, we segment the study area into different regions and apply targeted algorithms in each subregion. The working hypothesis is that the integration of appropriately selected region-specific models will outperform a globally applied model as it will incorporate further spatial heterogeneity. We examine urban land use changes in Denver, Colorado. Two land use maps from different time snapshots (1977 and 1997) are used to detect the urban land use changes, and 23 explanatory factors are produced to model urbanization. The proposed Spatially Heterogeneous Expert Based (SHEB) model tested decision trees as the underlying modeling algorithm, applying them in different subregions. In this paper the segmentation tested is the division of the entire area into interior and exterior urban areas. Interior urban areas are those situated within dense urbanized structures, while exterior urban areas are outside of these structures. Obtained results on this model regionalization technique indicate that targeted local models produce improved results in terms of Kappa, accuracy percentage and multi-scale performance. The model superiority is also confirmed by model pairwise comparisons using t-tests. The segmentation criterion of interior/exterior selection may not only capture specific characteristics on spatial and morphological properties, but also socioeconomic factors which may implicitly be present in these spatial representations. The usage of interior and exterior subregions in the present study acts as a proof of concept. Other spatial heterogeneity indicators, for example landscape, socioeconomic and political boundaries could act as the basis for improved local segmentations.展开更多
Particulate matter(PM), one of the most important pollutants of traffic emission, threatens the health of urban ecosystems and citizens. Roadside trees play an important role in trapping PM, and the foliar PM load is ...Particulate matter(PM), one of the most important pollutants of traffic emission, threatens the health of urban ecosystems and citizens. Roadside trees play an important role in trapping PM, and the foliar PM load is a useful indicator for air PM pollution in road systems. To detect the relationships of foliar PM load with road structures, urbanization, and meteorology in road systems, we studied a widely-planted tree Sophora japonica L. in 100 roads and 10 yards of Beijing, China, and found that the foliar PM loads increased with the distances from the urban centre(DUC) linearly, while decreased with the road density. All-subsets regression analysis indicated that DUC, average monthly relative humidity, average monthly wind speed, and mean annual wind speed were the most important factors in predicting foliar PM load, rather than general situation of buildings and road cleanliness. The monthly relative humidity and monthly wind speed had a negative correlation to foliar PM, while the annual relative humidity and annual wind speed had a positive correlation to foliar PM. Suburban areas and these effective factors should be highlighted in PM control in Beijing.展开更多
Background: Natural resources within and around urban landscapes are under increasing pressure from ongoing urbanisation, and management efforts aimed at ensuring the sustainable provision of ecosystem services(ES) ar...Background: Natural resources within and around urban landscapes are under increasing pressure from ongoing urbanisation, and management efforts aimed at ensuring the sustainable provision of ecosystem services(ES) are an important response. Given the limited resources available for assessing urban ES in many cities, practical approaches for integrating ES in decision-making process are needed.Methods: We apply remote sensing techniques(integrating LiDAR data with high-resolution multispectral imagery)and combined these with supplementary spatial data to develop a replicable approach for assessing the role of urban vegetation(including invasive alien plants) in providing ES and ecosystem disservices(EDS). We identify areas denoting potential management trade-offs based on the spatial distribution of ES and EDS using a local-scale case study in the city of Cape Town, South Africa. Situated within a global biodiversity hotspot, Cape Town must contend with widespread invasions of alien plants(especially trees and shrubs) along with complex socio-political challenges. This represents a useful system to examine the challenges in managing ES and EDS in the context of urban plant invasions.Results: Areas of high ES provision(for example carbon sequestration, shade and visual amenity) are characterized by the presence of large trees. However, many of these areas also result in numerous EDS due to invasions of alien trees and shrubs – particularly along rivers, in wetlands and along the urban edge where tall alien trees have established and spread into the natural vegetation(for example increased water consumption, increased fire risk and reduced soil quality). This suggests significant trade-offs regarding the management of species and the ES and EDS they provide.Conclusions: The approach applied here can be used to provide recommendations and to guide city planners and managers to fine-tune management interventions at local scales to maximise the provision of ES.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20240170)Open fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK2203)+2 种基金the Jiangsu Meteorological Bureau Youth Fund (KQ202314)the Fundamental Research Funds for the Central Universities (2024300330)Jiangsu Collaborative Innovation Center for Climate Change。
文摘Increasing the urban tree cover percentage(TCP) is widely recognized as an efficient way to mitigate the urban heat island effect. The cooling efficiency of urban trees can be either enhanced or attenuated on hotter days, depending on the physiological response of urban trees to rising ambient temperature. However, the response of urban trees' cooling efficiency to rising urban temperature remains poorly quantified for China's cities. In this study, we quantify the response of urban trees' cooling efficiency to rising urban temperature at noontime [~1330 LT(local time), LT=UTC+8] in 17summers(June, July, and August) from 2003–19 in 70 economically developed cities of China based on satellite observations. The results show that urban trees have stronger cooling efficiency with increasing temperature, suggesting additional cooling benefits provided by urban trees on hotter days. The enhanced cooling efficiency values of urban trees range from 0.002 to 0.055℃ %-1 per 1℃ increase in temperature across the selected cities, with larger values for the lowTCP-level cities. The response is also regulated by background temperature and precipitation, as the additional cooling benefit tends to be larger in warmer and wetter cities at the same TCP level. The positive response of urban trees' cooling efficiency to rising urban temperature is explained mainly by the stronger evapotranspiration of urban trees on hotter days.These results have important implications for alleviating urban heat risk by utilizing urban trees, particularly considering that extreme hot days are becoming more frequent in cities under global warming.
基金Beijing Urban Governance Research Base of North China University of Technology(2024CSZL07).
文摘In the era of stock development following the acceleration of urbanization,the revitalization of urban green space has assumed an increasingly significant role.Consequently,the management of urban trees has emerged as a critical focus of urban governance,contributing to the enhancement of livability in human settlements.This study offers a comprehensive analysis of the urban tree management system in Oxford,UK,identifying that its primary objective is to optimize and maintain a harmonious balance between human activities and the natural environment through the implementation of high-quality planting practices.The system emphasizes enhanced management practices and establishes a robust framework for the development of targeted policies and management regulations,utilizing i-Tree eco-efficiency assessment and real-time feedback mechanisms.China’s urban tree management is in its nascent stages,and there is an urgent need for the development of urban green space.By adopting the refined management assessment methodologies employed for urban trees in Oxford,UK,it is possible to enhance the ecological value of urban trees,which represent a significant green resource within cities,and contribute to the creation of more livable urban spaces.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金Supported by the Planning Project for the Practical Creativity Training for College Students of Institution of Higher Education of Jiangsu Province in 2014(Sujiaobangao[2014]No.8)the Science and Technology Planning Project of Nantong City(HS2014025)+2 种基金the First Micro-financial Support Project for Ecological Construction of Nantong City(Tonghuan[2014]No.33)the Project for Venture Philanthropy of Nantong City(Tuantongweilian[2015]No.D11)the Crosswise Project of Jiangsu Misho Ecological Landscape Co.,Ltd~~
文摘Although small in size, PM25 can do great harm to the environment, and city greening trees can reduce PM2.5 pollution to a certain extent. This paper reviewed the mechanism of city greening trees to reduce PM2.5 pollution, screening and classification of green land allocation model of PM2.5 reducing greening trees, and made prospect on how to construct the evaluation index system of PM2.5 re- ducing greening trees and urban green land allocation.
文摘Currently, urban areas are the largest segment of the world’s population, and they can reach up to 80% of it in some countries. Understanding green areas is of paramount importance to also understand the population’s mental health and well-being, as well as to achieve ecological understanding and its impact on urban infrastructure. Thus, the aim of the present study is to carry out a survey on both urban afforestation structure and on its social impact on a Brazilian municipality. It also sought to understand the damages caused by these species to urban infrastructure in comparison to data collected in 2009, to assess forest coverage in this municipality and tree planting underutilized capacity. Accordingly, all the streets in this municipality’s urban area, the botanical data of each tree and its damage to the city’s infrastructure and phytosanitary conditions were surveyed (from 1 to 5). Data were compared to those from the 2009 census, and social issues were analyzed. In total, 5044 individuals belonging to 189 species were recorded. The most often found species were Lagerstroemia indica and Murraya paniculata. Out of the total number of trees, 458 trees scored at least one score “5” in one of the criteria, and this number represents 8.9% of the total of the trees. L. indica was the species accounting for the highest rates of phytosanitary and infrastructure issues. Data comparison evidenced that urban tree canopy lost 25% of its vegetation between the two measurements taken herein, but the number of species has increased. When it comes to damages, many trees started showing phytosanitary issues or damage to urban infrastructure.
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
文摘Afforestation has been observed as a green trend in urban areas. The incorporation of trees in urban infrastructure is highly recommended to act as a solution to outlined environmental problems such as global warming. However, it has been precipitously introduced in cities, towns, and metropolitans. The introduction of the green practice was so abrupt that it became devoid to meeting the essential needs for tree growth, thus, failing to bring out the desired effects. Inappropriately selecting and planting trees in urban spaces has resulted in stressed trees that are deficient at reaching up to the calculated goals and in the long run end up being problematic. The main objective of this study is to evaluate the implications of planting southern live oak (Quercus virginiana) trees in the wrong urban space so as to aid in recommending sustainable green solutions for the urban community. By studying southern live oaks planted in Howell Community Park and three randomly selected areas in Southern University Baton Rouge Campus, this study analyzes how the selection of these tree species in the urban spaces influenced their growth and general well-being. These urban spaces were randomly drafted based on accessibility and availability of several southern live oaks. Planting approaches in the four study areas were explored and the general health condition of the trees was determined using the tree appraisal method presented by the i-tree model: my tree. ArcGIS collector was used to collect the GPS coordinates of the trees and ArcMap was used to generate the maps of the study areas. ArcMap software geolocated the coordinates of the southern live oaks in all the four-study areas. The software was used to generate shapefiles of the four study areas and their location in East Baton Rouge. The analysis of the results proved that none of the southern live oaks had an excellent health condition and most of the trees experienced different issues due to planting them in the wrong urban spaces.
基金supported by the National Natural Science Foundation of China (Grant No. 30900181)“111 Project” (2008-B08044)
文摘With rapid urbanization occurring throughout China,the existence of Tree Sparrows (Passer montanus) in big cities is likely to be affected by a decrease in habitat and food availability.Can the urban Tree Sparrow adapt to these changes? To elucidate this question,we studied the effect of urbanization on the abundance and distribution of Tree Sparrows in Beijing.We found the abundance of the Tree Sparrow negatively correlated with an urbanization score.Sparrow abundance was very low in residential areas with high-rise buildings,commercial centers and main roads,while their numbers were significantly higher in parks,university campuses,low building residential and suburban areas.Environmental factors within the 50 m and 200 m scales were most suitable in predicting the distribution of Tree Sparrows during winter,while factors within 50 m and 400 m scales are suitable during the breeding season.During winter,the number of conifer trees and pedestrians were the major factors at the 50 m scale,while the area of high-rise buildings and vegetation become the predominant factors on a 200 m scale.Alternatively,during the breeding season the area of low buildings and the number of conifers and pedestrians were the main factors on the 50 m scale while the area of high-rise buildings and vegetation remained the most important factors on the 400 m scale.These results indicate that highly urbanized areas are not suitable habitats for the Tree Sparrow,although this species can adapt to human environments.Food and nest sites for urban birds should be considered in urban planning of big cities in developing countries.
文摘Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and modulation of evapotranspiration. It also plays an important role filtering urban water systems and reducing storm water runoff.Methods: We investigate the capacity of ALS data to individually detect, map and characterize large(taller than15 m) trees within the City of Vancouver. Large trees are critical for the function and character of Vancouver’s urban forest. We used an object-based approach for individual tree detection and segmentation to determine tree locations(position of the stem), to delineate the shape of the crowns and to categorize the latter either as coniferous or deciduous.Results: Results indicate a detection rate of 76.6% for trees > 15 m with a positioning error of 2.11 m(stem location). Extracted tree heights possessed a RMSE of 2.60 m and a bias of-1.87 m, whereas crown diameter was derived with a RMSE of 3.85 m and a bias of-2.06 m. Missed trees are principally a result of undetected treetops occurring in dense, overlapping canopies with more accurate detection and delineation of trees in open areas.Conclusion: By identifying key structural trees across Vancouver’s urban forests, we can better understand their role in providing ecosystem goods and services for city residents.
基金Sponsored by Science and Technology Project of Beijing Municipal Administration Center of Parks(ZX2017029)Special Fund for Forest Scientific Research in the Public Welfare(201404301)
文摘Ecosystem services of urban green spaces play an important role in the sustainable development of the urban ecosystem. How to quantify the ecological benefits of urban green spaces and evaluate their ecological services is a hot topic in related fields. Currently, with the advancement of science and technology, the assessment method has been developed from the traditional ones such as the Council of Tree and Landscape Appraisers(CTLA) method, afforestation cost method, and carbon tax method to CITYgreen and i-Tree. The latter two models have been widely used in countries of Europe and America, while the use of i-Tree has not been promoted in China. In this paper, i-Tree Eco(UFORE) was selected for research, and its application in the assessment of the ecosystem services of urban green spaces, including energy saving, air quality improvement, interception of rainwater, and aesthetic benefits, were analyzed. This study aims to provide a theoretical and scientific basis for the introduction and localization of i-Tree, as well as its generalization in the assessment of forest ecosystem services domestically.
文摘Urban tree inventory is a great tool for gathering data that can be used by different end users. This study attempted to chart the species diversity in planted areas and measure their tree diameter at breast height to screen them for the carbon storage potential. A total of 2860 trees belonging to 36 species were recorded in the planted vegetation in parks and avenue plantation. The dominant species were Azadirachta indicia (25.5%), Conocarpus erectus (19.2%), Ficus spp. (15.5%), Tabebuia rosea (9.2%), Peitophorum pterocarpum (9.0%) and the remaining represents (21.6%) of the tree identified in this study. It was found that the highest contribution of carbon sequestration (CO<sub>2</sub> equivalent) is dominated by the Ficus spp. (30.3%) with a total of 3399.3 tCO<sub>2</sub>eq, followed by Azadirachta indicia (25.4%) with a total of 2845.2 tCO<sub>2</sub>eq and Conocarpus erectus (20.4%) with a total of 2286 tCO<sub>2</sub>eq. The entire area has the capability to sequester around 11,213.3 tCO<sub>2</sub>eq and on average of 3.9 ± 0.1 tCO<sub>2</sub>eq. In accordance with the findings, it is imperative for the preservation of a sustainable environment to have vegetation that has the capacity to store carbon. The study suggests, there is potential to increase carbon sequestration in urban cities through plantation programs on existing and new land uses and along roads.
文摘Urban trees are subjected to different damaging agents throughout their lifetime. The aims of this study were to identify tree damaging agents, and to obtain a Damage Severity Index (DSI) in order to categorize tree health condition at San Juan de Aragon Park. Each tree was identified at species level in 28 randomly established plots in ten sections of the study area. Up to two types of damage were recorded per tree, based on the FIA (Forest Inventory an Analysis Program) protocol, and a DSI was obtained for each damaged tree considering location of damage, nature of the damaging agent and severity. A total of 753 trees were assessed and 12 species and 27 damaging agents were identified. Cankers, galls, the pepper tree psyllid and the red gum lerp psyllid were the most frequent damaging agents. Australian pine, red gum, Mediterranean cypress, Mexican white cedar, and California pepper were the most affected species. The DSI ranged from 3 to 17 and the average was 7.9. Sections J and H and the species California pepper, Australian pine, and Mexican white cedar presented the highest DSI. The tree population had a moderate health condition, while the aforementioned sections and tree species showed the poorest.
文摘This paper first elaborated the purpose of accelerating the greening process,improving the landscape effect,and improving the ecological environment for transplanting large trees to cities. Then,it introduced main problems: destroying the ecological environment of the producing area,damaging the entire ecosystem,increasing the cost of social greening,and seriously wasting forest resources. It analyzed the reasons for these problems,including the imperfect laws and regulations,blind and not scientific transplanting,and eagerness for quick success.Finally,it came up with recommendations including improving policies and regulations,reinforcing technical specifications,and first pseudo planting then field planting,and setting up the overall point of view.
文摘The accelerating urbanization has brought various problems in environment, land, fund and so on. With the guidance of market economy, economic urban green spaces have become the optimal choice in urban landscaping of China, which can not only improve urban landscapes, ecological environment, satisfy higher spiritual and cultural demands of people, but also create considerable economic benefits, and enhance the coordinated development of economy, society and environment. With Shijiazhuang City as an example, the approaches of constructing economic urban green spaces fit for Shijiazhuang City were analyzed in this study, to provide references for the construction of economic urban green spaces in other cities.
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.
文摘Urbanization changes have been widely examined and numerous urban growth models have been proposed. We introduce an alternative urban growth model specifically designed to incorporate spatial heterogeneity in urban growth models. Instead of applying a single method to the entire study area, we segment the study area into different regions and apply targeted algorithms in each subregion. The working hypothesis is that the integration of appropriately selected region-specific models will outperform a globally applied model as it will incorporate further spatial heterogeneity. We examine urban land use changes in Denver, Colorado. Two land use maps from different time snapshots (1977 and 1997) are used to detect the urban land use changes, and 23 explanatory factors are produced to model urbanization. The proposed Spatially Heterogeneous Expert Based (SHEB) model tested decision trees as the underlying modeling algorithm, applying them in different subregions. In this paper the segmentation tested is the division of the entire area into interior and exterior urban areas. Interior urban areas are those situated within dense urbanized structures, while exterior urban areas are outside of these structures. Obtained results on this model regionalization technique indicate that targeted local models produce improved results in terms of Kappa, accuracy percentage and multi-scale performance. The model superiority is also confirmed by model pairwise comparisons using t-tests. The segmentation criterion of interior/exterior selection may not only capture specific characteristics on spatial and morphological properties, but also socioeconomic factors which may implicitly be present in these spatial representations. The usage of interior and exterior subregions in the present study acts as a proof of concept. Other spatial heterogeneity indicators, for example landscape, socioeconomic and political boundaries could act as the basis for improved local segmentations.
基金Under the auspices of National Natural Science Foundation of China(No.41430638)Special Found for Beijing Common Construction Project for Beijing Laboratory of Urban and Rural Ecological Environment(No.PXM2015_014207_000014)Grants from the Beijing Municipal Education Commission(No.PXM2019_014207_000099)
文摘Particulate matter(PM), one of the most important pollutants of traffic emission, threatens the health of urban ecosystems and citizens. Roadside trees play an important role in trapping PM, and the foliar PM load is a useful indicator for air PM pollution in road systems. To detect the relationships of foliar PM load with road structures, urbanization, and meteorology in road systems, we studied a widely-planted tree Sophora japonica L. in 100 roads and 10 yards of Beijing, China, and found that the foliar PM loads increased with the distances from the urban centre(DUC) linearly, while decreased with the road density. All-subsets regression analysis indicated that DUC, average monthly relative humidity, average monthly wind speed, and mean annual wind speed were the most important factors in predicting foliar PM load, rather than general situation of buildings and road cleanliness. The monthly relative humidity and monthly wind speed had a negative correlation to foliar PM, while the annual relative humidity and annual wind speed had a positive correlation to foliar PM. Suburban areas and these effective factors should be highlighted in PM control in Beijing.
基金Funding for this work was provided by the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through their collaborative research project on “Integrated Management of invasive alien species in South Africa”the National Research Foundation,South Africa(grant85417 to DMR)
文摘Background: Natural resources within and around urban landscapes are under increasing pressure from ongoing urbanisation, and management efforts aimed at ensuring the sustainable provision of ecosystem services(ES) are an important response. Given the limited resources available for assessing urban ES in many cities, practical approaches for integrating ES in decision-making process are needed.Methods: We apply remote sensing techniques(integrating LiDAR data with high-resolution multispectral imagery)and combined these with supplementary spatial data to develop a replicable approach for assessing the role of urban vegetation(including invasive alien plants) in providing ES and ecosystem disservices(EDS). We identify areas denoting potential management trade-offs based on the spatial distribution of ES and EDS using a local-scale case study in the city of Cape Town, South Africa. Situated within a global biodiversity hotspot, Cape Town must contend with widespread invasions of alien plants(especially trees and shrubs) along with complex socio-political challenges. This represents a useful system to examine the challenges in managing ES and EDS in the context of urban plant invasions.Results: Areas of high ES provision(for example carbon sequestration, shade and visual amenity) are characterized by the presence of large trees. However, many of these areas also result in numerous EDS due to invasions of alien trees and shrubs – particularly along rivers, in wetlands and along the urban edge where tall alien trees have established and spread into the natural vegetation(for example increased water consumption, increased fire risk and reduced soil quality). This suggests significant trade-offs regarding the management of species and the ES and EDS they provide.Conclusions: The approach applied here can be used to provide recommendations and to guide city planners and managers to fine-tune management interventions at local scales to maximise the provision of ES.