Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied ...Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.展开更多
With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu...With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.展开更多
There is no doubt that the UHI (urban heat island) is a mounting problem in built-up environments, due to the energy retention by surface dense building materials, leading to increased temperatures, air pollution, a...There is no doubt that the UHI (urban heat island) is a mounting problem in built-up environments, due to the energy retention by surface dense building materials, leading to increased temperatures, air pollution, and energy consumption. Much of the earlier research on the UHI has used two-dimensional (2-D) information, such as land uses and the distribution of vegetation. In the case of homogeneous land uses, it is possible to predict surface temperatures with reasonable accuracy with 2-D information. However, three-dimensional (3-D) information is necessary to analyze more complex sites, including dense building clusters. In this research, 3-D building geometry information is combined with 2-D urban surface information to examine the relationship between urban characteristics and temperature. The research includes the following stages: (1) estimating urban temperature; (2) developing a 3-D city model; (3) generating geometric parameters; and (4) conducting statistical analyses using both linear and non-linear regression models. The implications of the results are discussed, providing guidelines for policies aiming to reduce the UHI.展开更多
Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigat...Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigations of the impact of urban three-dimensional(3D)morphology on PM2.5 concentration have important scientific significance.In this paper,39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013.This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations.Based on the elimination of the meteorological conditions and public transportation factors,the relationships between urban 3D morphology and PM2.5 concentrations are highlighted.Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations.Results demonstrated that road length density(RLD),road area density(RAD),construction area density(CAD),construction height density(CHD),construction volume density(CVD),construction otherness(CO),and vegetation area density(VAD)have positive impacts on the PM2.5 concentrations,whereas water area density(WAD),water fragmentation(WF),and vegetation fragmentation(VF)(except for the 500 m buffer)have negative impacts on the PM2.5 concentrations.Moreover,the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale.The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.展开更多
Given extensive and rapid urbanization globally,assessing regional urban thermal effects(UTE)in both canopy and boundary layers under extreme weather/climate conditions is of significant interest.Rapid population and ...Given extensive and rapid urbanization globally,assessing regional urban thermal effects(UTE)in both canopy and boundary layers under extreme weather/climate conditions is of significant interest.Rapid population and economic growth in the Yangtze River Delta(YRD)have made it one of the largest city clusters in China.Here,we explore the three-dimensional(3D)UTE in the YRD using multi-source observations from high-resolution automatic weather stations,radiosondes,and eddy covariance sensors during the record-setting heat wave(HW)of July-August 2013.It is found that the regional canopy layer UTE is up to 0.6-1.2℃,and the nocturnal UTE(0.7-1.6℃)is larger than daytime UTE(0.2-0.5℃)during the HW.The regional canopy layer UTE is enhanced and expanded northwards,with some rural sites contaminated by the urban influences,especially at night.In the boundary layer,the strengthened regional UTE extends vertically to at least 925 hPa(~750 m)during this HW.The strengthened 3D UTE in the YRD is associated with an enlarged Bowen ratio difference between urban and non-urban areas.These findings about the 3D UTE are beneficial for better understanding of the thermal environment of large city clusters under HW and for more appropriate adaption and mitigation strategies.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
The local climate zone(LCZ)scheme has been widely utilized in regional climate modeling,urban planning,and thermal comfort investigations.However,existing LCz classification methods face challenges in characterizing c...The local climate zone(LCZ)scheme has been widely utilized in regional climate modeling,urban planning,and thermal comfort investigations.However,existing LCz classification methods face challenges in characterizing complex urban structures and human activities involving local climatic environments.In this study,we proposed a novel LCZ mapping method that fully uses space-borne multi-view and diurnal observations,i.e.daytime Ziyuan-3 stereo imageries(2.1 m)and Luojia-1 nighttime light(NTL)data(130 m).Firstly,we performed land cover classification using multiple machine learning methods(i.e.random forest(RF)and XGBoost algorithms)and various features(i.e.spectral,textural,multi-view features,3D urban structure parameters(USPs),and NTL).In addition,we developed a set of new cumulative elevation indexes to improve building roughness assessments.The indexes can estimate building roughness directly from fused point clouds generated by both along-and across-track modes.Finally,based on the land cover and building roughness results,we extracted 2D and 3D USPs for different land covers and used multi-classifiers to perform LCZ mapping.The results for Beijing,China,show that our method yielded satisfactory accuracy for LCZ mapping,with an overall accuracy(OA)of 90.46%.The overall accuracy of land cover classification using 3D USPs generated from both along-and across-track modes increased by 4.66%,compared to that of using the single along-track mode.Additionally,the OA value of LCZ mapping using 2D and 3D USPs(88.18%)achieved a better result than using only 2D USPs(83.83%).The use of NTL data increased the classification accuracy of LCZs E(bare rock or paved)and F(bare soil or sand)by 6.54%and 3.94%,respectively.The refined LCZ classification achieved through this study will not only contribute to more accurate regional climate modeling but also provide valuable guidance for urban planning initiatives aimed at enhancing thermal comfort and overall livabillity in urban areas.Ultimately,this study paves the way for more comprehensive and effective strategies in addressing the challenges posed by urban microclimates.展开更多
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-422)National Natural Science Foundation of China (No 40701059)
文摘Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.
基金Under the auspices of Major Project of National Social Science Foundation of China(No.13&ZD13027)National Science&Technology Pillar Program During 12th Five-year Plan Period(No.2012BAJ22B03-04)National Natural Science Foundation of China(No.41401164)
文摘With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes.
文摘There is no doubt that the UHI (urban heat island) is a mounting problem in built-up environments, due to the energy retention by surface dense building materials, leading to increased temperatures, air pollution, and energy consumption. Much of the earlier research on the UHI has used two-dimensional (2-D) information, such as land uses and the distribution of vegetation. In the case of homogeneous land uses, it is possible to predict surface temperatures with reasonable accuracy with 2-D information. However, three-dimensional (3-D) information is necessary to analyze more complex sites, including dense building clusters. In this research, 3-D building geometry information is combined with 2-D urban surface information to examine the relationship between urban characteristics and temperature. The research includes the following stages: (1) estimating urban temperature; (2) developing a 3-D city model; (3) generating geometric parameters; and (4) conducting statistical analyses using both linear and non-linear regression models. The implications of the results are discussed, providing guidelines for policies aiming to reduce the UHI.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFB0502504)Beijing Excellent Youth Talent Program(No.2015400018760G294)National Natural Science Foundation of China(No.41201443,41001267).
文摘Urban particulate matter 2.5(PM2.5)pollution and public health are closely related,and concerns regarding PM2.5 are widespread.Of the underlying factors,the urban morphology is the most manageable.Therefore,investigations of the impact of urban three-dimensional(3D)morphology on PM2.5 concentration have important scientific significance.In this paper,39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013.This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations.Based on the elimination of the meteorological conditions and public transportation factors,the relationships between urban 3D morphology and PM2.5 concentrations are highlighted.Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations.Results demonstrated that road length density(RLD),road area density(RAD),construction area density(CAD),construction height density(CHD),construction volume density(CVD),construction otherness(CO),and vegetation area density(VAD)have positive impacts on the PM2.5 concentrations,whereas water area density(WAD),water fragmentation(WF),and vegetation fragmentation(VF)(except for the 500 m buffer)have negative impacts on the PM2.5 concentrations.Moreover,the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale.The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.
基金Supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)National Natural Science Foundation of China(42175056,41790471)+2 种基金Natural Science Foundation of Shanghai(21ZR1457600)China Meteorological Administration Innovation and Development Project(CXFZ2022J009)UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘Given extensive and rapid urbanization globally,assessing regional urban thermal effects(UTE)in both canopy and boundary layers under extreme weather/climate conditions is of significant interest.Rapid population and economic growth in the Yangtze River Delta(YRD)have made it one of the largest city clusters in China.Here,we explore the three-dimensional(3D)UTE in the YRD using multi-source observations from high-resolution automatic weather stations,radiosondes,and eddy covariance sensors during the record-setting heat wave(HW)of July-August 2013.It is found that the regional canopy layer UTE is up to 0.6-1.2℃,and the nocturnal UTE(0.7-1.6℃)is larger than daytime UTE(0.2-0.5℃)during the HW.The regional canopy layer UTE is enhanced and expanded northwards,with some rural sites contaminated by the urban influences,especially at night.In the boundary layer,the strengthened regional UTE extends vertically to at least 925 hPa(~750 m)during this HW.The strengthened 3D UTE in the YRD is associated with an enlarged Bowen ratio difference between urban and non-urban areas.These findings about the 3D UTE are beneficial for better understanding of the thermal environment of large city clusters under HW and for more appropriate adaption and mitigation strategies.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.
基金supported by the National Natural Science Foundation of China[grant number:41930650]the Scientific Research Project of Beijing Municipal Education Commission[grant number:KM202110016004]the Beijing Key Laboratory of Urban Spatial Information Engineering[grant number 20220111].
文摘The local climate zone(LCZ)scheme has been widely utilized in regional climate modeling,urban planning,and thermal comfort investigations.However,existing LCz classification methods face challenges in characterizing complex urban structures and human activities involving local climatic environments.In this study,we proposed a novel LCZ mapping method that fully uses space-borne multi-view and diurnal observations,i.e.daytime Ziyuan-3 stereo imageries(2.1 m)and Luojia-1 nighttime light(NTL)data(130 m).Firstly,we performed land cover classification using multiple machine learning methods(i.e.random forest(RF)and XGBoost algorithms)and various features(i.e.spectral,textural,multi-view features,3D urban structure parameters(USPs),and NTL).In addition,we developed a set of new cumulative elevation indexes to improve building roughness assessments.The indexes can estimate building roughness directly from fused point clouds generated by both along-and across-track modes.Finally,based on the land cover and building roughness results,we extracted 2D and 3D USPs for different land covers and used multi-classifiers to perform LCZ mapping.The results for Beijing,China,show that our method yielded satisfactory accuracy for LCZ mapping,with an overall accuracy(OA)of 90.46%.The overall accuracy of land cover classification using 3D USPs generated from both along-and across-track modes increased by 4.66%,compared to that of using the single along-track mode.Additionally,the OA value of LCZ mapping using 2D and 3D USPs(88.18%)achieved a better result than using only 2D USPs(83.83%).The use of NTL data increased the classification accuracy of LCZs E(bare rock or paved)and F(bare soil or sand)by 6.54%and 3.94%,respectively.The refined LCZ classification achieved through this study will not only contribute to more accurate regional climate modeling but also provide valuable guidance for urban planning initiatives aimed at enhancing thermal comfort and overall livabillity in urban areas.Ultimately,this study paves the way for more comprehensive and effective strategies in addressing the challenges posed by urban microclimates.