Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, c...Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.展开更多
Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail tran...Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail transit(URT) under network operation. In order to describe the congestion's impact to passengers' route choices, a generalized cost function with in-vehicle congestion was set up. Building on the k-th shortest path algorithm, a method for generating choice set with time constraint was embedded, considering the characteristics of network operation. A simple but efficient route choice model, which was derived from travel surveys for URT passengers in China, was introduced to perform the stochastic network loading at each iteration in the algorithm. Initial tests on the URT network in Shanghai City show that the methodology, with rational calculation time, promises to compute more precisely the passenger flow distribution of URT under network operation, compared with those practical algorithms used in today's China.展开更多
This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three ...This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.展开更多
The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate rou...The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate route sets can lead to a number of potential routes being discarded on the grounds of infeasibility. This paper presents a new repair mechanism to complement the existing terminal repair and the make-small-change operators in dealing with the infeasibility of the candidate route set. When solving the UTRP, the general aim is to determine a set of transit route networks that achieves a minimum total cost for both the passenger and the operator. With this in mind, we propose a differential evolution (DE) algorithm for solving the UTRP with a specific objective of minimizing the average travel time of all served passengers. Computational experiments are performed on the basis of benchmark Mandl’s Swiss network. Computational results from the proposed repair mechanism are comparable with the existing repair mechanisms. Furthermore, the combined repair mechanisms of all three operators produced very promising results. In addition, the proposed DE algorithm outperformed most of the published results in the literature.展开更多
文摘Current urban rail transit has become a major mode of transportation, and passenger is an important factor of urban rail transport, so this article is based on passenger and the degree of the road network structure, calculating the point intensity of stations of urban rail transit, and then reaching a station importance by integrating many point intensities in a survey cycle time, and getting the station importance of urban rail transit network through concrete examples.
基金Project(2007AA11Z236) supported by the National High Technology Research and Development Program of ChinaProject(2012M5209O1) supported by China Postdoctoral Science Foundation
文摘Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail transit(URT) under network operation. In order to describe the congestion's impact to passengers' route choices, a generalized cost function with in-vehicle congestion was set up. Building on the k-th shortest path algorithm, a method for generating choice set with time constraint was embedded, considering the characteristics of network operation. A simple but efficient route choice model, which was derived from travel surveys for URT passengers in China, was introduced to perform the stochastic network loading at each iteration in the algorithm. Initial tests on the URT network in Shanghai City show that the methodology, with rational calculation time, promises to compute more precisely the passenger flow distribution of URT under network operation, compared with those practical algorithms used in today's China.
文摘This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.
文摘The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate route sets can lead to a number of potential routes being discarded on the grounds of infeasibility. This paper presents a new repair mechanism to complement the existing terminal repair and the make-small-change operators in dealing with the infeasibility of the candidate route set. When solving the UTRP, the general aim is to determine a set of transit route networks that achieves a minimum total cost for both the passenger and the operator. With this in mind, we propose a differential evolution (DE) algorithm for solving the UTRP with a specific objective of minimizing the average travel time of all served passengers. Computational experiments are performed on the basis of benchmark Mandl’s Swiss network. Computational results from the proposed repair mechanism are comparable with the existing repair mechanisms. Furthermore, the combined repair mechanisms of all three operators produced very promising results. In addition, the proposed DE algorithm outperformed most of the published results in the literature.