Urban agriculture has been increasingly popular as a form of modern agriculture in urban settings. It includes community gardens, fruit orchards, home gardens, veggie patches, public open spaces, reserves, urban fores...Urban agriculture has been increasingly popular as a form of modern agriculture in urban settings. It includes community gardens, fruit orchards, home gardens, veggie patches, public open spaces, reserves, urban forest, and recreational landscaping. However, irrigation using urban water supply has been identified as a major constraints for the development of urban agriculture. This study presents a sustainable water management trial at Butler, a northern sub-urban development in Perth, Western Australia, for urban irrigation. The trial system consists of a number of water saving features including untreated fit-for-purpose groundwater supplied via a third pipe network, drip irrigation, local weather station, soil moisture sensors connected with a local weather station, night time irrigation, soil enhancement with conditioning and mulching, and use of native plants and vegetation. The trial outcome was compared against controlled areas in terms of irrigation efficiency and sustainable water management for urban agriculture. The study demonstrated that a fit-for-purpose irrigation along with water sensitive land management could be a sustainable alternative for urban agriculture that would achieve a significant water saving and irrigation efficiency at urban settings. However, quality of untreated groundwater can be an issue while utilizing it for irrigation, but the research has shown that it can be managed with innovative irrigation techniques. This indicates that the fit-for-purpose irrigation system with water sensitive land management practices would be highly supportive in sustainable development of urban agriculture, vegetation and recreational landscaping.展开更多
In a world where excessive use and degradation of water resources are threatening the sustainability of livelihoods dependent on water and agriculture, increased food production will have to be done in the face of a c...In a world where excessive use and degradation of water resources are threatening the sustainability of livelihoods dependent on water and agriculture, increased food production will have to be done in the face of a changing climate and climate variability. There is a need to make optimal use of the available water resource to maximize productivity. Climate-smart irrigation is aimed at increasing per unit production and income from irrigated cropping systems without having negative impacts on the environment or other water users and uses. This paper developed a water allocation model using Genetic Algorithm to equitably allocation available water to the various sectors in Kano River Irrigation Scheme yielding an optimal as well as equitable water release with a 96.44% demand met. An average relative supply of 0.94 was obtained indicating the there was even supply of water to all the sectors. The model is robust and relatively easy to apply and can be employed by farm managers to achieve equity and optimal use of the available water resource.展开更多
文摘Urban agriculture has been increasingly popular as a form of modern agriculture in urban settings. It includes community gardens, fruit orchards, home gardens, veggie patches, public open spaces, reserves, urban forest, and recreational landscaping. However, irrigation using urban water supply has been identified as a major constraints for the development of urban agriculture. This study presents a sustainable water management trial at Butler, a northern sub-urban development in Perth, Western Australia, for urban irrigation. The trial system consists of a number of water saving features including untreated fit-for-purpose groundwater supplied via a third pipe network, drip irrigation, local weather station, soil moisture sensors connected with a local weather station, night time irrigation, soil enhancement with conditioning and mulching, and use of native plants and vegetation. The trial outcome was compared against controlled areas in terms of irrigation efficiency and sustainable water management for urban agriculture. The study demonstrated that a fit-for-purpose irrigation along with water sensitive land management could be a sustainable alternative for urban agriculture that would achieve a significant water saving and irrigation efficiency at urban settings. However, quality of untreated groundwater can be an issue while utilizing it for irrigation, but the research has shown that it can be managed with innovative irrigation techniques. This indicates that the fit-for-purpose irrigation system with water sensitive land management practices would be highly supportive in sustainable development of urban agriculture, vegetation and recreational landscaping.
文摘In a world where excessive use and degradation of water resources are threatening the sustainability of livelihoods dependent on water and agriculture, increased food production will have to be done in the face of a changing climate and climate variability. There is a need to make optimal use of the available water resource to maximize productivity. Climate-smart irrigation is aimed at increasing per unit production and income from irrigated cropping systems without having negative impacts on the environment or other water users and uses. This paper developed a water allocation model using Genetic Algorithm to equitably allocation available water to the various sectors in Kano River Irrigation Scheme yielding an optimal as well as equitable water release with a 96.44% demand met. An average relative supply of 0.94 was obtained indicating the there was even supply of water to all the sectors. The model is robust and relatively easy to apply and can be employed by farm managers to achieve equity and optimal use of the available water resource.