Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically h...Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically have different shapes,the focus is shifting towards shape segregation.In this study,experiments are conducted by mixing cubic and spherical grains.The results indicate that spherical grains gather at the center and cubic grains are distributed around them,and the degree of segregation is low.Through experiments,a structured analysis of local regions is conducted to explain the inability to form stable segregation patterns with obviously different geometric shapes.Further,through simulations,the reasons for the central and peripheral distributions are explained by comparing velocities and the number of collisions of the grains in the flow layer.展开更多
Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social inf...Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.展开更多
Segregation is a serious defect in alloy ingots which severely deteriorates materials performance.The segregation defect in Mg-6Gd alloy is studied by coupling macro thermal-solutal-convection transport and micro dend...Segregation is a serious defect in alloy ingots which severely deteriorates materials performance.The segregation defect in Mg-6Gd alloy is studied by coupling macro thermal-solutal-convection transport and micro dendrite growth.The macroscopic fluid dynamics and mass transfer equations are resolved to forecast the segregation behavior under conditions of continuous temperature variation during the solidification process.The numerical model is validated by testing double-diffusive natural convection in a closed square cavity.A phase field model is then applied to simulate the micro dendrite growth,using macro undercooling and liquid flow velocity as boundary conditions.Results show that the multiscale segregation behavior,including macro solute distribution and micro dendritic morphology,is strongly dependent on the temperature condition and the liquid convection,which provides guidance for reducing and eliminating the segregation defect.展开更多
Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic s...Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored.展开更多
Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor pla...Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor plasticity at room temperature,and unsatisfactory formability.To address these challenges,grain refinement and grain structure control have been identified as crucial factors to achieving high performance in low-alloyed Mg alloys.An effective way for regulating grain structure is through grain boundary(GB)segregation.This review presents a comprehensive summary of the distribution criteria of segregated atoms and the effects of solute segregation on grain size and growth in Mg alloys.The analysis encompasses both single element segregation and multi-element co-segregation behavior,considering coherent interfaces and incoherent interfaces.Furthermore,we introduce the high mechanical performance low-alloyed wrought Mg alloys that utilize GB segregation and analyze the potential impact mechanisms through which GB segregation influences materials properties.Drawing upon these studies,we propose strategies for the design of high mechanical performance Mg alloys with desirable properties,including high strength,excellent ductility,and good formability,achieved through the implementation of GB segregation.The findings of this review contribute to advancing the understanding of grain boundary engineering in Mg alloys and provide valuable insights for future alloy design and optimization.展开更多
"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic s..."Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation.展开更多
Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the...Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.展开更多
There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteri...There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.展开更多
The environmental impact issues,such as global warming and expansion of the urban zone,seem more serious and have become the biggest defining challenges of the 21st century.Climate change can lead to water shortages,d...The environmental impact issues,such as global warming and expansion of the urban zone,seem more serious and have become the biggest defining challenges of the 21st century.Climate change can lead to water shortages,desertification,land degradation,air pollution,rising sea levels,accelerated deforestation,and exacerbated economic pressures.Global urban growth greatly impacts changes in sociability,humanity,and the environment of the Earth.The human presence,especially in cities,seriously affects resource use and waste disposal,and they are consuming natural resources faster than the planet can sustain during urbanization,changing how people live.China,with a population of 1.3 billion,has seen tens of millions of people living in the countryside migrate to cities,especially megacities,since the 1980s.As a result of its decision to industrialize and urbanize to boost the economy,China has become the world’s second-largest consumer of energy.In recent years,China’s government has quickly recognized the lessons of“limits to growth”and has taken action by initiating the construction process in Dongtan,Shanghai,China.They are making efforts to build urban-rural integration communities to promote sustainable development.Based on a literature review focusing on Dongtan,research questions are raised according to the research objective:(1)What are the challenges of sustainable development in urban-rural integration?(2)What practices has Dongtan implemented for sustainable development,or how is sustainable development being applied to Dongtan?(3)What are the social,political,environmental,and economic concerns regarding the sustainable development of Dongtan?The sustainable urban-rural integration concerns the ecological,economic,environmental,and psychological aspects of urban-rural integration design and management.The overall objective is to promote sustainable development in economic,social,ecological,and spatial dimensions.It will be a liveable,complete community that makes economic,environmental,and social sense locally while also contributing to national and global sustainable development.It will serve as a compelling model for how to build sustainable urban-rural integration worldwide.展开更多
The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing v...The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior.展开更多
Urban-rural integration (URI) is a global challenge that is highly related to inequalities, poverty, economic growth, and other Sustainable Development Goals (SDGs). Existing research has evaluated the extent of URI a...Urban-rural integration (URI) is a global challenge that is highly related to inequalities, poverty, economic growth, and other Sustainable Development Goals (SDGs). Existing research has evaluated the extent of URI and explored its influencing factors, but urban-rural linkages are seldom incorporated in evaluation systems, and geographical factors are rarely recognized as the influencing factors. We construct a URI framework including regional economy, rural development, urban-rural linkage, and urban-rural gap. Based on a dataset consisting of 1,669 counties in China in 2020, we reveal the spatial pattern of URI and find a high correlation between the spatial pattern of URI and the relief degree of land surface (RDLS). Using structural equation modeling, we discover that topography has direct ( − 0.18, p < 0.001) and indirect ( − 0.17, p < 0.001) effects on URI. The indirect negative effects are mediated through the infrastructure, and the combination of localized advantages and modern technical conditions could mitigate the negative impact of topography. Finally, we identify 742 counties as lagging regions in URI, which can be clustered into eight types. Our findings could facilitate policy designing for those countries striving for integrated and sustainable development of urban and rural areas.展开更多
The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected sc...The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected scanning transmission electron microscopy(Cs-STEM)techniques.To facility our study,we grow two multiple quantum wells(MQWs)samples,which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs(sample A).Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface,and the effect of the Ga As insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale.Therefore,the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity,interface roughness,and further an enhanced optical performance of InGaAs/AlGaAs QWs.展开更多
Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers...Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.展开更多
As a significant index to evaluate the mixing efficiency,studying the concentration distribution is directly related to the intensity of segregation(I_(s)).In this work,the I_(s) of the mixture composed of NaCl soluti...As a significant index to evaluate the mixing efficiency,studying the concentration distribution is directly related to the intensity of segregation(I_(s)).In this work,the I_(s) of the mixture composed of NaCl solutionwater was investigated experimentally in a rotating bar reactor(RBR)by the conductivity method.The results showed that the mixing efficiency was improved along the axial direction from the bottom to the top in the RBR.The concentration distribution at the bottom section was more uneven,and I_(s) was higher compared with the top section,which decreased from 6.53×10^(-5)to 1.57×10^(-7).With the increase of rotational speed from 0 to 700 r·min^(-1),I_s at the bottom and top sections decreased from 4.27×10^(-3)to 7.10×10^(-5)and from 1.93×10^(-3)to 7.29×10^(-7),respectively.The increases flow rate of solution A,and the decreases of concentration of NaCl and flow rate of solution B gave rise to the reduction of I_(s),signifying an improved mixing efficiency.The results revealed that the conductivity method used in this paper has high efficiency and low cost to measure the I_(s),which indicates a promising prospect for estimating reactors'mixing performance.展开更多
Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural ind...Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.展开更多
The development of rural areas usually has a positive impact on the urban-rural integration. This study explores an innovative approach to stimulate rural development by proposing qualified villages as central village...The development of rural areas usually has a positive impact on the urban-rural integration. This study explores an innovative approach to stimulate rural development by proposing qualified villages as central villages that can provide basic urban services for their residents and residents of neighboring villages. This approach can contribute to overcoming the various problems that rural areas faced at the social, economic, and environmental levels. It seeks to achieve spatial sustainability of rural areas, representing a new approach by integrating urban development methods to revitalize rural villages. The study analyzed 15 villages belonging to Abbasiya District of AL Kufa City in the Najaf Governorate of Iraq. Based on the GIS techniques and the analysis of urban service indicators(village population, percentage of urban building materials used in villages, distance between village and health centers, distance between village and main roads, nature of economic activity, distance between village and educational institutions, distance between village and drinking water sources, number of communication towers, and distance between village and urban administrative center), this study proposed that Abu Gharb and Albu Ghraib can served as central villages in Abbasiya District in the future. This study establishes a new rural spatial structure to achieve rural sustainable development, improves the development status of rural areas, and provides a theoretical basis for the government and relevant institutions to use urban service indicators, achieving rural sustainable development and formulating relevant development policies in Abbasiya District.展开更多
Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ expe...Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.展开更多
Chengdu's development strategy of“western control”has laid a solid ecological background for 8 western districts,cities and counties and cultivated good ecological resources.The integrated urban-rural developmen...Chengdu's development strategy of“western control”has laid a solid ecological background for 8 western districts,cities and counties and cultivated good ecological resources.The integrated urban-rural development in the new era will realize the balanced development of urban and rural areas and give full play to the value of rural ecological resources through the“powerful combination”of urban and rural areas.To realize the urban-rural integration and high-quality rural development in Chengdu“western control”area,it is necessary to enhance the awareness of ecological resources and ecological products,and carry out unified planning of ecological infrastructure,ecological material products and ecological service products in the whole“western control”area.Meantime,ecological restoration must be carried out scientifically,and scene design for value transformation of ecological products should be implemented innovatively.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12072200 and 12372384)。
文摘Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically have different shapes,the focus is shifting towards shape segregation.In this study,experiments are conducted by mixing cubic and spherical grains.The results indicate that spherical grains gather at the center and cubic grains are distributed around them,and the degree of segregation is low.Through experiments,a structured analysis of local regions is conducted to explain the inability to form stable segregation patterns with obviously different geometric shapes.Further,through simulations,the reasons for the central and peripheral distributions are explained by comparing velocities and the number of collisions of the grains in the flow layer.
基金supported by funding from the National Natural Science Foundation of China(Grant No.U21A2010)the National Science Fund for Distinguished Young Scholars(Grant No.42225104)the National Key Research and Development Program(Grant No.2022YFF130110O).
文摘Equal access to social infrastructures is a fundamental prerequisite for sustainable development,but has long been a great challenge worldwide.Previous studies have primarily focused on the accessibility to social infras-tructures in urban areas across various scales,with less attention to rural areas,where inequality can be more severe.Particularly,few have investigated the disparities of accessibility to social infrastructures between urban and rural areas.Here,using the Changsha-Zhuzhou-Xiangtan urban agglomeration,China,as an example,we investigated the inequality of accessibility in both urban and rural areas,and further compared the urban-rural difference.Accessibility was measured by travel time of residents to infrastructures.We selected four types of social infrastructures including supermarkets,bus stops,primary schools,and health care,which were funda-mentally important to both urban and rural residents.We found large disparities in accessibility between urban and rural areas,ranging from 20 min to 2 h.Rural residents had to spend one to two more hours to bus stops than urban residents,and 20 min more to the other three types of infrastructures.Furthermore,accessibility to multiple infrastructures showed greater urban-rural differences.Rural residents in more than half of the towns had no access to any infrastructure within 15 min,while more than 60%of the urban residents could access to all infrastructures within 15 min.Our results revealed quantitative accessibility gap between urban and rural areas and underscored the necessity of social infrastructures planning to address such disparities.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3701000)the National Natural Science Foundation of China(Grant Nos.52101125,52471118,U2037601,and U21A2048)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(Grant No.2022QNRC001).
文摘Segregation is a serious defect in alloy ingots which severely deteriorates materials performance.The segregation defect in Mg-6Gd alloy is studied by coupling macro thermal-solutal-convection transport and micro dendrite growth.The macroscopic fluid dynamics and mass transfer equations are resolved to forecast the segregation behavior under conditions of continuous temperature variation during the solidification process.The numerical model is validated by testing double-diffusive natural convection in a closed square cavity.A phase field model is then applied to simulate the micro dendrite growth,using macro undercooling and liquid flow velocity as boundary conditions.Results show that the multiscale segregation behavior,including macro solute distribution and micro dendritic morphology,is strongly dependent on the temperature condition and the liquid convection,which provides guidance for reducing and eliminating the segregation defect.
文摘Controlling inner-wall band segregation is one of the difficulties in the production of high-strength antisulfur pipes.Comparative tests were carried out on different casting processes(superheat,mold electromagnetic stirring,end electromagnetic stirring,casting speed and soft reduction)for the smelting of high-strength antisulfur pipes.The microstructures of continuous-casting billets and hot-rolled or tempered pipes were analyzed using a metallographic microscope and scanning electron microscope.The mechanism and evolution law regarding the inner-wall band segregation of high-strength antisulfur pipes were studied,and the influence of different casting processes was explored.
基金the support of the National Natural Science Foundation of China(52071093 and 51871069)the Natural Science Foundation of Heilongjiang Province of China(LH2023E059)+1 种基金the Fundamental Research Program of Shenzhen Science and Technology Innovation Commission(JCYJ20210324131405015)PolyU Grant(1-BBR1)。
文摘Low-alloyed magnesium(Mg)alloys have emerged as one of the most promising candidates for lightweight materials.However,their further application potential has been hampered by limitations such as low strength,poor plasticity at room temperature,and unsatisfactory formability.To address these challenges,grain refinement and grain structure control have been identified as crucial factors to achieving high performance in low-alloyed Mg alloys.An effective way for regulating grain structure is through grain boundary(GB)segregation.This review presents a comprehensive summary of the distribution criteria of segregated atoms and the effects of solute segregation on grain size and growth in Mg alloys.The analysis encompasses both single element segregation and multi-element co-segregation behavior,considering coherent interfaces and incoherent interfaces.Furthermore,we introduce the high mechanical performance low-alloyed wrought Mg alloys that utilize GB segregation and analyze the potential impact mechanisms through which GB segregation influences materials properties.Drawing upon these studies,we propose strategies for the design of high mechanical performance Mg alloys with desirable properties,including high strength,excellent ductility,and good formability,achieved through the implementation of GB segregation.The findings of this review contribute to advancing the understanding of grain boundary engineering in Mg alloys and provide valuable insights for future alloy design and optimization.
基金supported by the National Natural Science Foundation of China(NSFC,31970564,32000397,32171982)the Fundamental Research Funds for the Central Universities(2662023PY004)。
文摘"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation.
基金support from the National Natural Science Foundation of China(Grant No.42276049)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42020103).
文摘Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.
基金Under the auspices of National Social Science Foundation of China (No.21BJY202)。
文摘There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.
文摘The environmental impact issues,such as global warming and expansion of the urban zone,seem more serious and have become the biggest defining challenges of the 21st century.Climate change can lead to water shortages,desertification,land degradation,air pollution,rising sea levels,accelerated deforestation,and exacerbated economic pressures.Global urban growth greatly impacts changes in sociability,humanity,and the environment of the Earth.The human presence,especially in cities,seriously affects resource use and waste disposal,and they are consuming natural resources faster than the planet can sustain during urbanization,changing how people live.China,with a population of 1.3 billion,has seen tens of millions of people living in the countryside migrate to cities,especially megacities,since the 1980s.As a result of its decision to industrialize and urbanize to boost the economy,China has become the world’s second-largest consumer of energy.In recent years,China’s government has quickly recognized the lessons of“limits to growth”and has taken action by initiating the construction process in Dongtan,Shanghai,China.They are making efforts to build urban-rural integration communities to promote sustainable development.Based on a literature review focusing on Dongtan,research questions are raised according to the research objective:(1)What are the challenges of sustainable development in urban-rural integration?(2)What practices has Dongtan implemented for sustainable development,or how is sustainable development being applied to Dongtan?(3)What are the social,political,environmental,and economic concerns regarding the sustainable development of Dongtan?The sustainable urban-rural integration concerns the ecological,economic,environmental,and psychological aspects of urban-rural integration design and management.The overall objective is to promote sustainable development in economic,social,ecological,and spatial dimensions.It will be a liveable,complete community that makes economic,environmental,and social sense locally while also contributing to national and global sustainable development.It will serve as a compelling model for how to build sustainable urban-rural integration worldwide.
基金financially supported by the National Key R&D Program of China(No.2021YFB3700402)the National Natural Science Foundation of China(Nos.5187 4103,52074092,and 51874024)。
文摘The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior.
基金the National Natural Science Foundation of China(Grants No.T2261129477 and 41971220)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23070300).
文摘Urban-rural integration (URI) is a global challenge that is highly related to inequalities, poverty, economic growth, and other Sustainable Development Goals (SDGs). Existing research has evaluated the extent of URI and explored its influencing factors, but urban-rural linkages are seldom incorporated in evaluation systems, and geographical factors are rarely recognized as the influencing factors. We construct a URI framework including regional economy, rural development, urban-rural linkage, and urban-rural gap. Based on a dataset consisting of 1,669 counties in China in 2020, we reveal the spatial pattern of URI and find a high correlation between the spatial pattern of URI and the relief degree of land surface (RDLS). Using structural equation modeling, we discover that topography has direct ( − 0.18, p < 0.001) and indirect ( − 0.17, p < 0.001) effects on URI. The indirect negative effects are mediated through the infrastructure, and the combination of localized advantages and modern technical conditions could mitigate the negative impact of topography. Finally, we identify 742 counties as lagging regions in URI, which can be clustered into eight types. Our findings could facilitate policy designing for those countries striving for integrated and sustainable development of urban and rural areas.
基金X.H.gratefully acknowledges the financial support from the National Natural Science Foundation of China(Grant No.21902096)the Scientific Research Foundation of Shaanxi University of Science and Technology(Grant No.126061803)+1 种基金S.M.and B.X.thank the National Natural Science Foundation of China(Grant No.21972103)the Shanxi Provincial Key Innovative Research Team in Science and Technology(Grant No.201703D111026).
文摘The In segregation and its suppression in InGaAs/AlGaAs quantum well are investigated by using high-resolution x-ray diffraction(XRD)and photoluminescence(PL),combined with the state-of-the-art aberration corrected scanning transmission electron microscopy(Cs-STEM)techniques.To facility our study,we grow two multiple quantum wells(MQWs)samples,which are almost identical except that in sample B a thin GaAs layer is inserted in each of the InGaAs well and AlGaAs barrier layer comparing to pristine InGaAs/AlGaAs MQWs(sample A).Our study indeed shows the direct evidences that In segregation occurs in the InGaAs/AlGaAs interface,and the effect of the Ga As insertion layer on suppressing the segregation of In atoms is also demonstrated on the atomic-scale.Therefore,the atomic-scale insights are provided to understand the segregation behavior of In atoms and to unravel the underlying mechanism of the effect of GaAs insertion layer on the improvement of crystallinity,interface roughness,and further an enhanced optical performance of InGaAs/AlGaAs QWs.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109053,22179051,62104136Special Fund of Taishan Scholar Program of Shandong Province,Grant/Award Number:tsqnz20221141+3 种基金National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000Spring City Plan:the High-level Talent Promotion and Training Project of Kunming,Grant/Award Number:2022SCP005Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110548Guangzhou Science and Technology Planning Project,Grant/Award Number:202102020775。
文摘Bandgap-tunable mixed-halide perovskite materials have attracted considerable interest because of their indispensability as top counterparts in tandem solar cells.However,the soft and disordered lattice always suffers from severe phase segregation under illumination,which is particularly susceptible to residual lattice strain.Herein,we report a strain regulation strategy by using alkenamides terminated Ti_(3)C_(2)T_(x)MXenes as an additive into perovskite precursor.Apart from the role of a template for grain growth to obtain high-quality films,the stretchable alkyl chain promotes lattice shrinkage or expansion to form an elastic grain boundary to eliminate the spatially distributed stain and shut down ion migration channels.As a result,the all-inorganic perovskite solar cells based on CsPbIBr_(2)and CsPbI_(2)Br halides achieve prolonged device stability under harsh conditions and the best power conversion efficiencies up to 11.06%and 14.30%,respectively.
基金supported by the National Natural Science Foundation of China(21725601)。
文摘As a significant index to evaluate the mixing efficiency,studying the concentration distribution is directly related to the intensity of segregation(I_(s)).In this work,the I_(s) of the mixture composed of NaCl solutionwater was investigated experimentally in a rotating bar reactor(RBR)by the conductivity method.The results showed that the mixing efficiency was improved along the axial direction from the bottom to the top in the RBR.The concentration distribution at the bottom section was more uneven,and I_(s) was higher compared with the top section,which decreased from 6.53×10^(-5)to 1.57×10^(-7).With the increase of rotational speed from 0 to 700 r·min^(-1),I_s at the bottom and top sections decreased from 4.27×10^(-3)to 7.10×10^(-5)and from 1.93×10^(-3)to 7.29×10^(-7),respectively.The increases flow rate of solution A,and the decreases of concentration of NaCl and flow rate of solution B gave rise to the reduction of I_(s),signifying an improved mixing efficiency.The results revealed that the conductivity method used in this paper has high efficiency and low cost to measure the I_(s),which indicates a promising prospect for estimating reactors'mixing performance.
基金Under the auspices of National Natural Science Foundation of China(No.42271225)Research Program Fund for Humanities and Social Sciences of the Ministry of Education of China(No.22YJA790050)+2 种基金Henan Provincial Planning Fund for Philosophy and Social Sciences(No.2022BJJ011)Postgraduate Cultivating Innovation Action Plan of Henan University(No.SYLYC2022014)Henan University of Economics and Law Huang Tingfang/Xinhe Young Scholars Program(No.13)。
文摘Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.
文摘The development of rural areas usually has a positive impact on the urban-rural integration. This study explores an innovative approach to stimulate rural development by proposing qualified villages as central villages that can provide basic urban services for their residents and residents of neighboring villages. This approach can contribute to overcoming the various problems that rural areas faced at the social, economic, and environmental levels. It seeks to achieve spatial sustainability of rural areas, representing a new approach by integrating urban development methods to revitalize rural villages. The study analyzed 15 villages belonging to Abbasiya District of AL Kufa City in the Najaf Governorate of Iraq. Based on the GIS techniques and the analysis of urban service indicators(village population, percentage of urban building materials used in villages, distance between village and health centers, distance between village and main roads, nature of economic activity, distance between village and educational institutions, distance between village and drinking water sources, number of communication towers, and distance between village and urban administrative center), this study proposed that Abu Gharb and Albu Ghraib can served as central villages in Abbasiya District in the future. This study establishes a new rural spatial structure to achieve rural sustainable development, improves the development status of rural areas, and provides a theoretical basis for the government and relevant institutions to use urban service indicators, achieving rural sustainable development and formulating relevant development policies in Abbasiya District.
基金financial support from Region Hauts-de-France,FEDER,and Electricité de France(EDF)through PEROVSTAB programfinancial support from the IR-RMN-THC FR-3050 CNRS France for conducting solid-state NMR measurements.P.R.and G.N.M.R+1 种基金financial support from University of Lille and région Hauts-de-France.F.S“IMPRESSIVE”project which received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement number 826013.
文摘Environmental stability is a major bottleneck of perovskite solar cells.Only a handful of studies are investigating the effect of moisture on the structural degradation of the absorber.They mostly rely on ex situ experiments and on completely degraded samples,which restrict the assessment on initial and final stage.By combining in situ X-ray diffraction under controlled 85%relative humidity,and live observations of the water-induced degradation using liquid-cell transmission electron microscopy,we reveal two competitive degradation paths leading on one hand to the decomposition of state-of-theart mixed cation/anion(Cs_(0.05)(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17)I_(0.83))_(3)(CsMAFA)into PbI_(2) through a dissolution/recrystallization mechanism and,on the other hand,to a non-equilibrium phase segregation leading to CsPb_(2)Br_(5) and a Cesium-poor/iodide-rich Cs_(0.05)-x(MA_(0.17)FA_(0.83))_(0.95)Pb(Br_(0.17-2y)I_(0.83)+2y)_(3) perovskite.This degradation mechanism is corroborated at atomic-scale resolution through solid-state ^(1)H and ^(133)Cs NMR analysis.Exposure to moisture leads to a film containing important heterogeneities in terms of morphology,photoluminescence intensities,and lifetimes.Our results provide new insights and consensus that complex perovskite compositions,though very performant as champion devices,are comparatively metastable,a trait that limits the chances to achieve long-term stability.
基金Sponsored by Sichuan Landscape and Recreation Research Center Project(JGYQ2019008)。
文摘Chengdu's development strategy of“western control”has laid a solid ecological background for 8 western districts,cities and counties and cultivated good ecological resources.The integrated urban-rural development in the new era will realize the balanced development of urban and rural areas and give full play to the value of rural ecological resources through the“powerful combination”of urban and rural areas.To realize the urban-rural integration and high-quality rural development in Chengdu“western control”area,it is necessary to enhance the awareness of ecological resources and ecological products,and carry out unified planning of ecological infrastructure,ecological material products and ecological service products in the whole“western control”area.Meantime,ecological restoration must be carried out scientifically,and scene design for value transformation of ecological products should be implemented innovatively.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.