[Objective]The aim of this study was to explore the feasibility of three kinds of urea formaldehyde foam substrate in tall fescue establishment as well as to study on evaluation of turf quality.[Method]The visual esti...[Objective]The aim of this study was to explore the feasibility of three kinds of urea formaldehyde foam substrate in tall fescue establishment as well as to study on evaluation of turf quality.[Method]The visual estimates,ecological quality estimates and utility quality estimates were used as the 1st level indicators,and the density,color,texture,uniformity,green period,cover degree,biomass,emergence energy,growth rate and turf-forming time were used as the corresponding 2nd level indicators.With T.L.Satty's method Analytic Hierarchy Process(AHP) and the fuzzy synthesis evaluation method,the weight ratio of matrix was obtained and the synthetic evaluation result was accorded with facts,then it could be regarded as the satisfying value of weight.[Result]The quality of three covering soil treatments was better than that of uncovering treatment and conventional treatment,the quality synthetic evaluation of F1 was the best,which was about 0.770.[Conclusion]Urea formaldehyde foam substrate showed high quality for turf establishment,which could be further spread and applied.展开更多
For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments, we investigated the influence of urea treatment on the forma...For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments, we investigated the influence of urea treatment on the formaldehyde emission, physical and mechanical properties of the manufactured particleboard. Wheat straws were treated at three levels of urea concentration (5%, 10%, 15%) and 95℃ as holding temperature. Wheat straw particleboards were manufactured using hot press at 180℃ and 3 MPa with two types of UF adhesive (UF-45, UF-91). Then the formaldehyde emission values, physical properties and mechanical properties were considered. The results show that the for- maldehyde emission value was decreased by increasing urea concentration. Furthermore, the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens. Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.展开更多
Many factors including depletion of the forest, environmental awareness, and generation of large quantities of agro-forest residues have increased the need to partially or wholly replace wood with agro-forest residue ...Many factors including depletion of the forest, environmental awareness, and generation of large quantities of agro-forest residues have increased the need to partially or wholly replace wood with agro-forest residue for particleboard production. This study assessed the decay resistance of particleboards produced from four agro-forest residues using cassava starch and urea formaldehyde as adhesives. <i><span>Musa paradisiaca pseudostem</span></i><span>, </span><i><span>Theobroma cacao </span></i><span>stem and pod, and sawdust of </span><i><span>Ceiba pentandra</span></i><span> were used for the study. Properties determined were: Weight loss, decay resistance rating and decay susceptibility index. These properties were evaluated after 12 weeks of exposure to </span><i><span>Coriolopsis polyzona</span></i><span> in accordance with ASTM D 2017</span><span>-</span><span>05. The results indicate that the weight loss for </span><i><span>Musa paradisiaca pseudostem</span></i><span> particleboard was least for both urea formaldehyde and cassava starch adhesives. Even though almost all the particleboards produced were classified as resistant or highly resistant to fungi attack, those produced with urea formaldehyde had better decay resistance properties than that of cassava starch. Furthermore, particleboards coated with synthetic polyvinyl lacquer had better resistance to fungi attack than the uncoated ones. At 5% level of significance, the agro-forest residue, adhesive and surface finish as well as their interactions had significant effects on decay resistance of the particleboards produced. It is recommended that further studies which aim at determining the effect of combination of the agro-forest residues and that of urea formaldehyde and cassava starch be conducted to determine their effects on decay properties of particleboards.</span>展开更多
Ammonia volatilization(AV) from basal fertilizer with different nitrogen(N) types and application methods was investigated by the ventilation method in germination and early seedling stages during radish growth season...Ammonia volatilization(AV) from basal fertilizer with different nitrogen(N) types and application methods was investigated by the ventilation method in germination and early seedling stages during radish growth seasons in 2014. Four N fertilizer types, urea(U), ammonium bicarbonate(AB), ammonia sulfate(AS), and controlled urea formaldehyde(CUF) were applied through 5 cm depth placement(I) and 10 cm depth placement(II). The results showed that the N fertilizer type was the main factor that caused AV loss in germination and early seedling stages from the radish field. The highest and the lowest cumulative AV losses in germination and early seedling stages from the radish fields were 33.23 and 11.21 N kg/hm^2 for the treatments of AB+I and CUF+II, respectively, accounting for 60.40 and 26.40% of the N application for each treatment. The 10 cm deep placement of N reduced AV rates and lagged the AV process, and CUF significantly reduced ammonia volatilization. The data showed that the suitable N fertilizer type and application method for basal fertilizer were CUF and deep placement, respectively.Therefore, fertilizing with proper N fertilizer types and methods should be the efficient measures to mitigate AV losses from the radish field and will alleviate environment problems.展开更多
The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen...The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen as potential raw materials for particleboard in this study.The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard.The planting densities used were low,moderate-low,moderate-high,and high,representing 500,1000,1500,and 2000 trees/ha,respectively.Prior to manufacturing,the RRIM 2000 series clone trees were harvested,cut,chipped,flaked,and screened.The mechanical and physical properties were evaluated in accordance with the Japanese Industrial Standard(JIS A 5908-2003).The findings revealed that both planting density and clone had a significant impact on the mechanical and physical properties of particleboard with a thickness of 10 mm and a density of 700 kg/m3.RRIM 2020 specimens with low planting density had superior modulus of elasticity(MOE),modulus of rupture(MOR),and internal bonding(IB)values of 2415,19,and 1.7 MPa,respectively.Furthermore,moderate-low planting density demonstrated the lowest thickness swelling(TS)and water absorption(WA)values and was comparable to control particleboard from commercial clone Prang Besar(PB),PB260.In terms of rubber clones,RRIM 2020 particleboard met the minimum requirements of the JIS standard for mechanical properties and outperformed RRIM 2025.This study recommended a low planting density of 500 trees/ha and the RRIM 2020 clone as a suitable raw material for particleboard manufacturing with a ten percent urea formaldehyde resin content.展开更多
This study investigated the possible use of four agro-forest residues generated in Ghana as an alternative raw material for particleboard manufacture using cassava starch and urea formaldehyde as adhesives. The partic...This study investigated the possible use of four agro-forest residues generated in Ghana as an alternative raw material for particleboard manufacture using cassava starch and urea formaldehyde as adhesives. The particle size of the materials ranged from 0.5 mm to 1.5 mm. An industrial pressing machine was used to press the homogeneous single layer particleboard. Physical and mechanical properties were determined in accordance with ASTM D 1037-06a and ASTM D 7519-11. The results indicate that the density of the particleboards produced ranged from 421 kg/m<sup>3</sup> to 598 kg/m<sup>3</sup>. The water absorption property of the particleboards also ranged from 7.66% to 22.41% and 18.17% to 59.46% for 2-hour and 24-hour immersions respectively. Additionally, the thickness swelling of the particleboards ranged from 3.38% to 5.03% and 9.37% to 21.49% for 2-hour, and 24-hour immersions respectively. The results further indicate that the modulus of elasticity, modulus of rapture, internal bond strength and hardness of the particleboards produced for both cassava starch and urea formaldehyde were adequate. Comparatively, for all the agro-forest materials used for this study, the physical and mechanical properties of the particleboards produced using urea formaldehyde as adhesive was better than those produced using cassava starch as adhesive. It could be concluded that the particleboards produced could be used for indoor applications or interior furnishings, under dry conditions. Additionally, it is recommended that further studies that combine cassava starch and urea formaldehyde as adhesives be conducted, as well as studies on combining <em>Plantain pseudostem</em> and Cacao pod in particleboard production.展开更多
Detrimental impacts of dust caused by mine tailings have yielded to several studies on the efficiency of different soil stabilizers.Bacterial stabilization has been recognized as a reality within recent decades,where ...Detrimental impacts of dust caused by mine tailings have yielded to several studies on the efficiency of different soil stabilizers.Bacterial stabilization has been recognized as a reality within recent decades,where bacteria could get adhesion to the grains and stabilize the soil particles.However,these bacteria are prone to be destroyed while exposed to the normal environmental conditions.In this study,the effects of microcapsules containing two types of bacterial freeze-dried spores(B.Subtilis Natto LMG 19457 and B.ESH)have been investigated on the mine tailing stability in terms of two parts.The first part of the study is dedicated to the fabrication of microcapsules within the two bacteria and identification of the characteristics of these microcapsules to set the time of microcapsules break and release in the soil.The urea-formaldehyde microcapsules containing tung oil were synthesized using microencapsulation method and at the following,the bacterial spores of B.Subtilis Natto LMG 19457 and B.ESH which had the high durability and the capability to grow in the silicon oil,were added to the microcapsules.The microcapsules effect on MT specimens and the viability of encapsulated spores were determined.The characteristics of the capsules were analyzed by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR)and thermo-gravimetric thermal analysis(TGA).In the second part,wind tunnel tests were conducted to study the effects of microorganism stabilizers on mine tailings.The results indicated that the dust erosion reduced from 16%-using water as a stabilizer-to the 0.2%while using microcapsules containing B.Subtilis Natto LMG 19457 and 0.8%while using microcapsules containing ESH.The results showed the high efficiency of microcapsules containing bacteria in stabilizing the MTs.This phenomenon was proved by SEM imaging in which the voids were bounded significantly while using the bacteria.展开更多
基金Supported by Beijing Excellent Talent Training Project(20071D020500055)Beijing Municipal Academy of Agricultural Youth Foundation of China(2007020414)+1 种基金Beijing Municipal Science and Technology Commission of Township Building Based onan Innovative New Agricultural Technology Research and Demonstration(Z080005032508024)Slow-release Fertilizer TechnologyResearch Project(2008BAD4B04)~~
文摘[Objective]The aim of this study was to explore the feasibility of three kinds of urea formaldehyde foam substrate in tall fescue establishment as well as to study on evaluation of turf quality.[Method]The visual estimates,ecological quality estimates and utility quality estimates were used as the 1st level indicators,and the density,color,texture,uniformity,green period,cover degree,biomass,emergence energy,growth rate and turf-forming time were used as the corresponding 2nd level indicators.With T.L.Satty's method Analytic Hierarchy Process(AHP) and the fuzzy synthesis evaluation method,the weight ratio of matrix was obtained and the synthetic evaluation result was accorded with facts,then it could be regarded as the satisfying value of weight.[Result]The quality of three covering soil treatments was better than that of uncovering treatment and conventional treatment,the quality synthetic evaluation of F1 was the best,which was about 0.770.[Conclusion]Urea formaldehyde foam substrate showed high quality for turf establishment,which could be further spread and applied.
文摘For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments, we investigated the influence of urea treatment on the formaldehyde emission, physical and mechanical properties of the manufactured particleboard. Wheat straws were treated at three levels of urea concentration (5%, 10%, 15%) and 95℃ as holding temperature. Wheat straw particleboards were manufactured using hot press at 180℃ and 3 MPa with two types of UF adhesive (UF-45, UF-91). Then the formaldehyde emission values, physical properties and mechanical properties were considered. The results show that the for- maldehyde emission value was decreased by increasing urea concentration. Furthermore, the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens. Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.
文摘Many factors including depletion of the forest, environmental awareness, and generation of large quantities of agro-forest residues have increased the need to partially or wholly replace wood with agro-forest residue for particleboard production. This study assessed the decay resistance of particleboards produced from four agro-forest residues using cassava starch and urea formaldehyde as adhesives. <i><span>Musa paradisiaca pseudostem</span></i><span>, </span><i><span>Theobroma cacao </span></i><span>stem and pod, and sawdust of </span><i><span>Ceiba pentandra</span></i><span> were used for the study. Properties determined were: Weight loss, decay resistance rating and decay susceptibility index. These properties were evaluated after 12 weeks of exposure to </span><i><span>Coriolopsis polyzona</span></i><span> in accordance with ASTM D 2017</span><span>-</span><span>05. The results indicate that the weight loss for </span><i><span>Musa paradisiaca pseudostem</span></i><span> particleboard was least for both urea formaldehyde and cassava starch adhesives. Even though almost all the particleboards produced were classified as resistant or highly resistant to fungi attack, those produced with urea formaldehyde had better decay resistance properties than that of cassava starch. Furthermore, particleboards coated with synthetic polyvinyl lacquer had better resistance to fungi attack than the uncoated ones. At 5% level of significance, the agro-forest residue, adhesive and surface finish as well as their interactions had significant effects on decay resistance of the particleboards produced. It is recommended that further studies which aim at determining the effect of combination of the agro-forest residues and that of urea formaldehyde and cassava starch be conducted to determine their effects on decay properties of particleboards.</span>
基金partially provided by Hubei Natural Science Foundation“Research on the Mechanism of Soil Ammonia Volatilization for Seed Germination and Early Growth of Radish and Mitigation Strategies”Hubei Foundation of Modern Agricultural Industry Technology System and Bulk Vegetable Agricultural Technology System in China
文摘Ammonia volatilization(AV) from basal fertilizer with different nitrogen(N) types and application methods was investigated by the ventilation method in germination and early seedling stages during radish growth seasons in 2014. Four N fertilizer types, urea(U), ammonium bicarbonate(AB), ammonia sulfate(AS), and controlled urea formaldehyde(CUF) were applied through 5 cm depth placement(I) and 10 cm depth placement(II). The results showed that the N fertilizer type was the main factor that caused AV loss in germination and early seedling stages from the radish field. The highest and the lowest cumulative AV losses in germination and early seedling stages from the radish fields were 33.23 and 11.21 N kg/hm^2 for the treatments of AB+I and CUF+II, respectively, accounting for 60.40 and 26.40% of the N application for each treatment. The 10 cm deep placement of N reduced AV rates and lagged the AV process, and CUF significantly reduced ammonia volatilization. The data showed that the suitable N fertilizer type and application method for basal fertilizer were CUF and deep placement, respectively.Therefore, fertilizing with proper N fertilizer types and methods should be the efficient measures to mitigate AV losses from the radish field and will alleviate environment problems.
基金The authors would like to thank the Ministry of Science,Technology,and Innovation and Ministry of Higher Education as well as the Institute of Tropical Forestry and Forest Products,Universiti Putra Malaysia,for providing the fund INTROP HICOE-(6369115).
文摘The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen as potential raw materials for particleboard in this study.The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard.The planting densities used were low,moderate-low,moderate-high,and high,representing 500,1000,1500,and 2000 trees/ha,respectively.Prior to manufacturing,the RRIM 2000 series clone trees were harvested,cut,chipped,flaked,and screened.The mechanical and physical properties were evaluated in accordance with the Japanese Industrial Standard(JIS A 5908-2003).The findings revealed that both planting density and clone had a significant impact on the mechanical and physical properties of particleboard with a thickness of 10 mm and a density of 700 kg/m3.RRIM 2020 specimens with low planting density had superior modulus of elasticity(MOE),modulus of rupture(MOR),and internal bonding(IB)values of 2415,19,and 1.7 MPa,respectively.Furthermore,moderate-low planting density demonstrated the lowest thickness swelling(TS)and water absorption(WA)values and was comparable to control particleboard from commercial clone Prang Besar(PB),PB260.In terms of rubber clones,RRIM 2020 particleboard met the minimum requirements of the JIS standard for mechanical properties and outperformed RRIM 2025.This study recommended a low planting density of 500 trees/ha and the RRIM 2020 clone as a suitable raw material for particleboard manufacturing with a ten percent urea formaldehyde resin content.
文摘This study investigated the possible use of four agro-forest residues generated in Ghana as an alternative raw material for particleboard manufacture using cassava starch and urea formaldehyde as adhesives. The particle size of the materials ranged from 0.5 mm to 1.5 mm. An industrial pressing machine was used to press the homogeneous single layer particleboard. Physical and mechanical properties were determined in accordance with ASTM D 1037-06a and ASTM D 7519-11. The results indicate that the density of the particleboards produced ranged from 421 kg/m<sup>3</sup> to 598 kg/m<sup>3</sup>. The water absorption property of the particleboards also ranged from 7.66% to 22.41% and 18.17% to 59.46% for 2-hour and 24-hour immersions respectively. Additionally, the thickness swelling of the particleboards ranged from 3.38% to 5.03% and 9.37% to 21.49% for 2-hour, and 24-hour immersions respectively. The results further indicate that the modulus of elasticity, modulus of rapture, internal bond strength and hardness of the particleboards produced for both cassava starch and urea formaldehyde were adequate. Comparatively, for all the agro-forest materials used for this study, the physical and mechanical properties of the particleboards produced using urea formaldehyde as adhesive was better than those produced using cassava starch as adhesive. It could be concluded that the particleboards produced could be used for indoor applications or interior furnishings, under dry conditions. Additionally, it is recommended that further studies that combine cassava starch and urea formaldehyde as adhesives be conducted, as well as studies on combining <em>Plantain pseudostem</em> and Cacao pod in particleboard production.
文摘Detrimental impacts of dust caused by mine tailings have yielded to several studies on the efficiency of different soil stabilizers.Bacterial stabilization has been recognized as a reality within recent decades,where bacteria could get adhesion to the grains and stabilize the soil particles.However,these bacteria are prone to be destroyed while exposed to the normal environmental conditions.In this study,the effects of microcapsules containing two types of bacterial freeze-dried spores(B.Subtilis Natto LMG 19457 and B.ESH)have been investigated on the mine tailing stability in terms of two parts.The first part of the study is dedicated to the fabrication of microcapsules within the two bacteria and identification of the characteristics of these microcapsules to set the time of microcapsules break and release in the soil.The urea-formaldehyde microcapsules containing tung oil were synthesized using microencapsulation method and at the following,the bacterial spores of B.Subtilis Natto LMG 19457 and B.ESH which had the high durability and the capability to grow in the silicon oil,were added to the microcapsules.The microcapsules effect on MT specimens and the viability of encapsulated spores were determined.The characteristics of the capsules were analyzed by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR)and thermo-gravimetric thermal analysis(TGA).In the second part,wind tunnel tests were conducted to study the effects of microorganism stabilizers on mine tailings.The results indicated that the dust erosion reduced from 16%-using water as a stabilizer-to the 0.2%while using microcapsules containing B.Subtilis Natto LMG 19457 and 0.8%while using microcapsules containing ESH.The results showed the high efficiency of microcapsules containing bacteria in stabilizing the MTs.This phenomenon was proved by SEM imaging in which the voids were bounded significantly while using the bacteria.