The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/for...The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.展开更多
Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heati...Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.展开更多
The Statistical Experimental Design techniques are the most powerful tools for the chemical reactors experimental modeling. Empirical models can be formulated for representing the chemical behavior of reactors with th...The Statistical Experimental Design techniques are the most powerful tools for the chemical reactors experimental modeling. Empirical models can be formulated for representing the chemical behavior of reactors with the minimal effort in the necessary number of experimental runs, hence, minimizing the consumption of chemicals and the consumption of time due to the reduction in the number of experimental runs and increasing the certainty of the results. Four types of nonthermal plasma reactors were assayed seeking for the highest efficiency in obtaining hydrogen and ethylene. Three different geometries for AC high voltage driven reactors, and only a single geometry for a DC high voltage pulse driven reactor were studied. According to the fundamental principles of chemical kinetics and considering an analogy among the reaction rate and the applied power to the plasma reactor, the four reactors are modeled following the classical chemical reactors design to understand if the behavior of the nonthermal plasma reactors can be regarded as the chemical reactors following the flow patterns of PFR (Plug Flow Reactor) or CSTR (Continuous Stirred Tank Reactor). Dehydrogenation is a common elimination reaction that takes place in nonthermal plasmas. Owing to this characteristic, a paraffinic heavy oil with an average molecular weight corresponding to C15 was used to study the production of light olefins and hydrogen.展开更多
Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted ...Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted starting from waste effluents such as cheese whey and molasses. Earlier studies on the same in fluidized bed and semifluidized bed biofilm reactors yielded encouraging results. The present study therefore involves design and analysis of inverse fluidized bed biofilm reactors for lactic acid synthesis. The performance features of the bioreactor have been studied both mathematically as well as experimentally. The inverse fluidized bed biofilm reactor has been found to provide more than 75% conversion of sucrose/lactose even at high capacities (high feed flow rates) exceeding 56,000 L/hr, within a reasonably low reactor volume. The fractional substrate conversion increases, though sluggishly, with increase in feed flow rate due to bed expansion and also with increase in cell mass concentration in biofilm due to enhancement in intrinsic rate of bioconversion. The inverse fluidized bed biofilm reactor of proposed design could be safely recommended for the commercial synthesis of polymer grade lactic acid from waste effluents such as cheese whey and molasses. The low operating cost of the bioreactor (due to downflow mode of operation) enhances the economy of the process. This would also help in significantly lowering the market price of the green plastic (PLLA) and shall promote its large scale manufacture and utilisation.展开更多
Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engi...Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design.展开更多
Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries....Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries.This paper presents the neutronic design of the U-Battery,which is a 5 MWth block-type HTR with a fuel lifetime of 5–10 years.Assuming a reactor pressure vessel diameter of less than 3.7 m,some possible reactor core configurations of the 5 MWth U-Battery have been investigated using the TRITON module in SCALE 6.The neutronic analysis shows that Layout 12×2B,a scattering core containing 2 layers of 12 fuel blocks each with 20% enriched235U,reaches a fuel lifetime of 10 effective full power years(EFPYs).When the diameter of the reactor pressure vessel is reduced to 1.8 m,a fuel lifetime of 4 EFPYs will be achieved for the 5 MWth U-Battery with a 25-cm thick graphite side reflector.Layouts 6×3 and 6×4 with a 25-cm thick BeO side reflector achieve a fuel lifetime of 7 and 10 EFPYs,respectively.The comparison of the different core configurations shows that,keeping the number of fuel blocks in the reactor core constant,the annular and scattering core configurations have longer fuel lifetimes and lower fuel cost than the cylindrical ones.Moreover,for the 5 MWth U-Battery,reducing the fuel inventory in the reactor core by decreasing the diameter of fuel kernels and packing fraction of TRISO particles is more effective to lower the fuel cost than decreasing the 235U enrichment.展开更多
This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which ca...This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.展开更多
Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core r...Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.展开更多
The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed ...The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed in Naka Fusion research establishment, JAERI. Comparison analysis and design window were analyzed using the finite element code ADINA 7.4. Through a 2D calculation for various geometrical configurations and sensitive material properties, a fundamental guideline for the first wall and blanket design are established with respect to maximum temperature, thermal and mechanical stress for many configurations. To satisfy hydrodynamic requirement, a4d4 (the dimension of coolant channel is 4 mm x 8 mm, and the distance between neighboring channels is 4 mm) was chosen as a design point for high thermal conductivity up to 50 W/m.K. In order to find a good solution for lower conductivity, more elaborate work should be done in the future. Nonetheless, the outline of design window for a specific structural material is very useful for the future A-SSTR2 first wall design.展开更多
To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is ...To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.展开更多
The paper describes a new human-interface system design method by combining the conception of Multilevel Flow Model and Ecological Interface Design to support operators’ fault diagnosis in the complex plant system. M...The paper describes a new human-interface system design method by combining the conception of Multilevel Flow Model and Ecological Interface Design to support operators’ fault diagnosis in the complex plant system. Modern man-made systems are always achieving many complex automatic and intelligent tasks so that they are becoming more and more complex and can be hardly understood by operators, who should be the primary role in system operating. This situation presents a big challenge to the operating support system that it should present the complex system in a direct and clear way to operators to and make operators understand the internal interaction of the system especially in the abnormal status to ensure the operating safety. The Multilevel Flow Model based on the idea of ”Abstraction Hierarchy”, aiming at decompressing a system by means-end and part-whole way, can be used to represent a complex system in a standard way and perform intelligent operating tasks such as fault diagnosis and process control. Ecological Interface Design, which based on the human cognitive properties, can present the internal interaction of the system in a direct way. This paper combines this two interface design conceptions to achieve two aspects, intelligent fault diagnosis and direct presentation of causal relationship of operating parameters, to support operators’ fault diagnosis in complex plant system. The design method is applied to a PWR power plant in this paper as an application example.展开更多
The Mo/HZSM-5 catalyzed,non-oxidative methane dehydroaromatization reaction provides a promising direct approach for production of benzene as well as naphthalene from CH4 resources and therefore its early industrial a...The Mo/HZSM-5 catalyzed,non-oxidative methane dehydroaromatization reaction provides a promising direct approach for production of benzene as well as naphthalene from CH4 resources and therefore its early industrial application is highly desired.A simplified methane dehydroaromatization process that consists of only one reactor unit and two product separation units is presented,and the factors that could significantly affect the process efficiency are quantitatively analyzed.While efficiently separating and recycling up to 70vol%unreacted CH4 from the stream out of condensable aromatics separation unit might become the main problem in maximizing the process efficiency,increasing the operating temperature as high as possible of the CH4 converter in the reactor unit and raising the system operation pressure to a level somewhat higher than one atmosphere should help maximize the process performance.At process-required high reaction temperatures,however,Mo/HZSM-5 catalyst suffers from vary rapid deactivation due to serious coke formation.Therefore,it becomes necessary to employ a reactor system that enables continuous and simultaneous regeneration of deactivated catalyst so as to maintain the catalytic activity and stability of catalyst over a sufficiently long operation period.Nineteen years of sustained R&D efforts of the author’s team have led to a few applicable technologies related to preparation of a fluidizable binder-free Mo/HZSM-5 catalyst for use in fluidized bed reactors,regeneration of deactivated Mo/HZSM-5 catalyst using H_(2),and design and operation of a dual-bed circulating fluidized bed reactor system for continuous processing of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.Operated at 1073 K and under a continuous regeneration mode,an in-house developed binder-free 6%Mo/HZSM-5 catalyst has proven to be capable of providing a stable benzene yield of approximately 13%over a cumulative period of 1800 min.Nevertheless,minimizing the catalyst deactivation by coking and developing a highly effective coke-removal and catalyst regeneration approach have still remained two important issues to be addressed in realization of early application of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.While the key to a practical solution to these challenging issues lies in designing an advanced Mo/HZSM-5 catalyst with improved coking resistance and H_(2)-regeneration activity,effective approaches to the design of such a catalyst are presented and discussed based on four possible coke formation routes.In the end,developing a pressurized pilot-scale dual-bed type of circulating fluidized bed reactor system that is capable of providing a yearly production of benzene of approximately 35 tons and naphthalene of 5 tons is visualized to make demonstration of the industrial applicability of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.展开更多
The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuc...The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.展开更多
This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the produ...This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the productivity of biogas and circulation flux of wastewater. The results indicate that in certain scope the circulation flux increases in linear with the biogas productivity rise. The result by the experiment and by the hydraulics model about the circulation flux is different. The circulation flux can be several or more than ten times of the influence.展开更多
针对传统的铅冷快堆非能动余热排出系统设计中存在开发效率低、迭代周期长、模型二义性等前期需求问题,本研究将基于模型的系统工程(Model-based System Engineering,MBSE)方法应用于铅冷快堆非能动余热排出系统设计需求中,结合设计流...针对传统的铅冷快堆非能动余热排出系统设计中存在开发效率低、迭代周期长、模型二义性等前期需求问题,本研究将基于模型的系统工程(Model-based System Engineering,MBSE)方法应用于铅冷快堆非能动余热排出系统设计需求中,结合设计流程进行系统架构的初步设计,该系统架构由需求分析、功能分析和设计综合三部分组成。结果表明:需求分析阶段生成的需求图和用例图可捕获系统需求并确定系统顶层用例;功能分析阶段绘制的时序图、活动图和状态机图可形成系统功能模型并提供早期确认与验证;设计综合阶段建立的白盒模型最终实现系统架构的分析与设计。采用该方法设计的系统架构可确保前后设计需求一致性,进一步降低设计风险并提高设计效率,可为数字化铅冷快堆非能动余热排出系统设计与优化提供应用参考。展开更多
基金support by the University of Southern Queensland(USQ)and Australian Research Council(ARC)Discovery Project DP190101782funded through Future Fellowship FT220100166 and Laureate Fellowship FL170100086 by the Australian Research Council(ARC).
文摘The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2013FJ4232)supported by the Science and Technology Plan of Hunan Province,China
文摘Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.
文摘The Statistical Experimental Design techniques are the most powerful tools for the chemical reactors experimental modeling. Empirical models can be formulated for representing the chemical behavior of reactors with the minimal effort in the necessary number of experimental runs, hence, minimizing the consumption of chemicals and the consumption of time due to the reduction in the number of experimental runs and increasing the certainty of the results. Four types of nonthermal plasma reactors were assayed seeking for the highest efficiency in obtaining hydrogen and ethylene. Three different geometries for AC high voltage driven reactors, and only a single geometry for a DC high voltage pulse driven reactor were studied. According to the fundamental principles of chemical kinetics and considering an analogy among the reaction rate and the applied power to the plasma reactor, the four reactors are modeled following the classical chemical reactors design to understand if the behavior of the nonthermal plasma reactors can be regarded as the chemical reactors following the flow patterns of PFR (Plug Flow Reactor) or CSTR (Continuous Stirred Tank Reactor). Dehydrogenation is a common elimination reaction that takes place in nonthermal plasmas. Owing to this characteristic, a paraffinic heavy oil with an average molecular weight corresponding to C15 was used to study the production of light olefins and hydrogen.
文摘Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted starting from waste effluents such as cheese whey and molasses. Earlier studies on the same in fluidized bed and semifluidized bed biofilm reactors yielded encouraging results. The present study therefore involves design and analysis of inverse fluidized bed biofilm reactors for lactic acid synthesis. The performance features of the bioreactor have been studied both mathematically as well as experimentally. The inverse fluidized bed biofilm reactor has been found to provide more than 75% conversion of sucrose/lactose even at high capacities (high feed flow rates) exceeding 56,000 L/hr, within a reasonably low reactor volume. The fractional substrate conversion increases, though sluggishly, with increase in feed flow rate due to bed expansion and also with increase in cell mass concentration in biofilm due to enhancement in intrinsic rate of bioconversion. The inverse fluidized bed biofilm reactor of proposed design could be safely recommended for the commercial synthesis of polymer grade lactic acid from waste effluents such as cheese whey and molasses. The low operating cost of the bioreactor (due to downflow mode of operation) enhances the economy of the process. This would also help in significantly lowering the market price of the green plastic (PLLA) and shall promote its large scale manufacture and utilisation.
文摘Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design.
文摘Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries.This paper presents the neutronic design of the U-Battery,which is a 5 MWth block-type HTR with a fuel lifetime of 5–10 years.Assuming a reactor pressure vessel diameter of less than 3.7 m,some possible reactor core configurations of the 5 MWth U-Battery have been investigated using the TRITON module in SCALE 6.The neutronic analysis shows that Layout 12×2B,a scattering core containing 2 layers of 12 fuel blocks each with 20% enriched235U,reaches a fuel lifetime of 10 effective full power years(EFPYs).When the diameter of the reactor pressure vessel is reduced to 1.8 m,a fuel lifetime of 4 EFPYs will be achieved for the 5 MWth U-Battery with a 25-cm thick graphite side reflector.Layouts 6×3 and 6×4 with a 25-cm thick BeO side reflector achieve a fuel lifetime of 7 and 10 EFPYs,respectively.The comparison of the different core configurations shows that,keeping the number of fuel blocks in the reactor core constant,the annular and scattering core configurations have longer fuel lifetimes and lower fuel cost than the cylindrical ones.Moreover,for the 5 MWth U-Battery,reducing the fuel inventory in the reactor core by decreasing the diameter of fuel kernels and packing fraction of TRISO particles is more effective to lower the fuel cost than decreasing the 235U enrichment.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Thorium uranium fuel cycle characteristics and key problem research Project(No.QYZDY-SSW-JSC016)
文摘This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.
文摘Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.
文摘The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed in Naka Fusion research establishment, JAERI. Comparison analysis and design window were analyzed using the finite element code ADINA 7.4. Through a 2D calculation for various geometrical configurations and sensitive material properties, a fundamental guideline for the first wall and blanket design are established with respect to maximum temperature, thermal and mechanical stress for many configurations. To satisfy hydrodynamic requirement, a4d4 (the dimension of coolant channel is 4 mm x 8 mm, and the distance between neighboring channels is 4 mm) was chosen as a design point for high thermal conductivity up to 50 W/m.K. In order to find a good solution for lower conductivity, more elaborate work should be done in the future. Nonetheless, the outline of design window for a specific structural material is very useful for the future A-SSTR2 first wall design.
文摘To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.
文摘The paper describes a new human-interface system design method by combining the conception of Multilevel Flow Model and Ecological Interface Design to support operators’ fault diagnosis in the complex plant system. Modern man-made systems are always achieving many complex automatic and intelligent tasks so that they are becoming more and more complex and can be hardly understood by operators, who should be the primary role in system operating. This situation presents a big challenge to the operating support system that it should present the complex system in a direct and clear way to operators to and make operators understand the internal interaction of the system especially in the abnormal status to ensure the operating safety. The Multilevel Flow Model based on the idea of ”Abstraction Hierarchy”, aiming at decompressing a system by means-end and part-whole way, can be used to represent a complex system in a standard way and perform intelligent operating tasks such as fault diagnosis and process control. Ecological Interface Design, which based on the human cognitive properties, can present the internal interaction of the system in a direct way. This paper combines this two interface design conceptions to achieve two aspects, intelligent fault diagnosis and direct presentation of causal relationship of operating parameters, to support operators’ fault diagnosis in complex plant system. The design method is applied to a PWR power plant in this paper as an application example.
文摘The Mo/HZSM-5 catalyzed,non-oxidative methane dehydroaromatization reaction provides a promising direct approach for production of benzene as well as naphthalene from CH4 resources and therefore its early industrial application is highly desired.A simplified methane dehydroaromatization process that consists of only one reactor unit and two product separation units is presented,and the factors that could significantly affect the process efficiency are quantitatively analyzed.While efficiently separating and recycling up to 70vol%unreacted CH4 from the stream out of condensable aromatics separation unit might become the main problem in maximizing the process efficiency,increasing the operating temperature as high as possible of the CH4 converter in the reactor unit and raising the system operation pressure to a level somewhat higher than one atmosphere should help maximize the process performance.At process-required high reaction temperatures,however,Mo/HZSM-5 catalyst suffers from vary rapid deactivation due to serious coke formation.Therefore,it becomes necessary to employ a reactor system that enables continuous and simultaneous regeneration of deactivated catalyst so as to maintain the catalytic activity and stability of catalyst over a sufficiently long operation period.Nineteen years of sustained R&D efforts of the author’s team have led to a few applicable technologies related to preparation of a fluidizable binder-free Mo/HZSM-5 catalyst for use in fluidized bed reactors,regeneration of deactivated Mo/HZSM-5 catalyst using H_(2),and design and operation of a dual-bed circulating fluidized bed reactor system for continuous processing of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.Operated at 1073 K and under a continuous regeneration mode,an in-house developed binder-free 6%Mo/HZSM-5 catalyst has proven to be capable of providing a stable benzene yield of approximately 13%over a cumulative period of 1800 min.Nevertheless,minimizing the catalyst deactivation by coking and developing a highly effective coke-removal and catalyst regeneration approach have still remained two important issues to be addressed in realization of early application of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.While the key to a practical solution to these challenging issues lies in designing an advanced Mo/HZSM-5 catalyst with improved coking resistance and H_(2)-regeneration activity,effective approaches to the design of such a catalyst are presented and discussed based on four possible coke formation routes.In the end,developing a pressurized pilot-scale dual-bed type of circulating fluidized bed reactor system that is capable of providing a yearly production of benzene of approximately 35 tons and naphthalene of 5 tons is visualized to make demonstration of the industrial applicability of the Mo/HZSM-5 catalyzed methane dehydroaromatization reaction.
文摘The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.
文摘This article provides some ideas about several key parameters in design of multistage anaerobic granular sludge reactor (MA(iSR), and an MAGSR was designed by these ideas. By experiment this paper studies the productivity of biogas and circulation flux of wastewater. The results indicate that in certain scope the circulation flux increases in linear with the biogas productivity rise. The result by the experiment and by the hydraulics model about the circulation flux is different. The circulation flux can be several or more than ten times of the influence.
文摘针对传统的铅冷快堆非能动余热排出系统设计中存在开发效率低、迭代周期长、模型二义性等前期需求问题,本研究将基于模型的系统工程(Model-based System Engineering,MBSE)方法应用于铅冷快堆非能动余热排出系统设计需求中,结合设计流程进行系统架构的初步设计,该系统架构由需求分析、功能分析和设计综合三部分组成。结果表明:需求分析阶段生成的需求图和用例图可捕获系统需求并确定系统顶层用例;功能分析阶段绘制的时序图、活动图和状态机图可形成系统功能模型并提供早期确认与验证;设计综合阶段建立的白盒模型最终实现系统架构的分析与设计。采用该方法设计的系统架构可确保前后设计需求一致性,进一步降低设计风险并提高设计效率,可为数字化铅冷快堆非能动余热排出系统设计与优化提供应用参考。