Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface applic...Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission that was measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g /day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the rice- growing season. These magnitudes of loss of N appear to be most important for environmental point of view.展开更多
Effective one-stage method of urea preparation by catalytic oxidative carbonylation of ammonia in liquid phase is developed. The method allows to prepare urea with productivity of-530 g/(L·h) in sufficiently mi...Effective one-stage method of urea preparation by catalytic oxidative carbonylation of ammonia in liquid phase is developed. The method allows to prepare urea with productivity of-530 g/(L·h) in sufficiently mild conditions (total pressure -30 bar, 45 ℃). The process is characterized by high selectivity (near 100%) i.e. byproducts separation is not needed. Almost all CO is consumed during the process, this substantially diminishes the waste-gas purification costs and raises the process environmental characteristics; the only byproduct is water.展开更多
Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^...Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^+-N concentration in the field floodwater affecting ammonia loss were also investigated. Results show that the ammonia loss by volatilization accounted for 18.6%-38.7% of urea applied at different stages, the greatest loss took place when urea was applied at the tillering stage, the smallest at the ear bearing stage, and the intermediate loss at the basal stage. The greatest loss took place within 7 d following the fertilizer application. Ammonia volatilization losses at three fertilization stages were significantly correlated with the ammonium concentration in the field floodwater after the fertilizer was applied. ^15N balance experiment indicated that the use efficiency of urea by rice plants ranged between 24.4% and 28.1%. At the early stage of rice growth, the fertilizer nitrogen use efficiency was rather low, only about 12%. The total amount of nitrogen lost from different fertilization stages in the rice field was 44.1%-54.4%, and the ammonia volatilization loss was 25.4%-33.3%. Reducing ammonia loss is an important treatment for improving N use efficiency.展开更多
Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertiliz...Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred mainly in the first week after applying N fert…展开更多
Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was m...Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using ^15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.展开更多
The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p...The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.展开更多
[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment...[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.展开更多
The traditional qualitative analysis of the individual factors on the kinetic and thermodynamic parameters cannot sufficiently reveal the mechanism underlying ammonia volatilization in soil.This study aimed to determi...The traditional qualitative analysis of the individual factors on the kinetic and thermodynamic parameters cannot sufficiently reveal the mechanism underlying ammonia volatilization in soil.This study aimed to determine the effects of temperature,moisture content,and their interaction on the kinetic and thermodynamic parameters,which revealed the key control mechanism underlying ammonia volatilization,modified the traditional Arrhenius model,and established a quantitative prediction model of cumulative NH_(3)-N loss(CNL).Laboratory culture experiments were conducted under different temperatures(T)(15℃,20℃,25℃and 35℃)and moisture contents(θ)(60%,80%,and 100%field capacities).Soil ammonia volatilization was also measured every 2 d.Results showed that the effects of individual factors and their interaction on the values of reaction rate(K_(N)),Activation free energy(ΔG),and activation entropy(ΔS)followed the descending order of T>θ>T·θ,whereas those of activation enthalpy(ΔH)and activation degree(lgN)followed the descending order ofθ>T>T·θ.The interaction showed significant effect on K_(N)value and insignificant effect on all the thermodynamic parameters.The effects of water and temperature were mainly observed during the preparatory stage and the most critical transition state stage of the chemical reaction,respectively.Given thatΔH>0,ΔG>0,andΔS>0,ammonia volatilization is found to be an endothermic reaction controlled by enthalpy.The new K_(N)(T)-2 model with the determination coefficient(R^(2))of 0.999 was more accurate than the traditional Arrhenius model with the R^(2)of 0.936.The new NH_(3)(T,θ)model with the mean absolute percentage error(MAPE)of 4.17%was more accurate than the traditional NH_(3)(T)model with the MAPE of 7.11%.These results supplemented the control mechanism underlying ammonia volatilization in soil fertilized with urea and improved the prediction accuracy of CNL.展开更多
Ammonia volatilization was measured with a continuous air flow enclosure method from a winter wheat field in the Experimental Farm of Jurong Agricultural School to investigate its main influencing factors. The experim...Ammonia volatilization was measured with a continuous air flow enclosure method from a winter wheat field in the Experimental Farm of Jurong Agricultural School to investigate its main influencing factors. The experiment with five treatments in triplicate, no N (control), 100, 200 and 300 kg N ha-1 with rice straw cover at a rate of 1500 kg ha-1 and 200 kg N ha-1 without rice straw, started when the winter wheat was sown in 1994. Sixty percent of the total amount of N applied was hasal and 40% was top-dressed. The measurement of ammonia volatilization was immediately conducted after urea was top-dressed on soil surface at wheat elongation stage in spring of 1996 and 1997. The results showed that there was a diurnal variation of ammonia volatilization rate from the winter wheat field, which synchronized with air temperature. N losses through ammonia volatilization increased with increasing N application rate, but the ratio of N lost through ammonia volatilization to applied N was not significantly affected by N application rate. The coverage of rice straw had no significant effect on ammonia volatilization. Soil moisture and rain events after urea was top-dressed affected ammonia volatilization significantly.展开更多
Field experiments were conducted in a maize (Zea mays L.)field of a calcareous fluvo-aquic soil in North China Plain for studying the fate and ammonia loss of urea-N applied at seedling stage,as well as the effectiven...Field experiments were conducted in a maize (Zea mays L.)field of a calcareous fluvo-aquic soil in North China Plain for studying the fate and ammonia loss of urea-N applied at seedling stage,as well as the effectiveness of coated calcium carbide(CCC) in reducing N loss and in improving the yield efficiency of urea.Results show that:(1) For the surface-broadcast treatment ammonia volatilization (measured with micro-meteorological technique)took place quickly,reached the peak 20-26hr after application,and then declined gradually;the cumulative ammonia loss approached the maximum 188hr after application (30% of the N applied),and increased only to 32% 284 hr after application;the latter accounted for 71% of the total loss (45% of applied N).(2) In the case of point placement at a depth of 5-10 cm,ammonia loss 188hr after application was only 12% of the N applied,accounting for 40% of the total loss.(3) There was no difference in total loss between the application depths of 6cm and 10 cm,the loss of them was 30% and 29%,respectively.(4) Total loss of N applied at lower rate (40kg N/ha)with point deep placement at 6cm depth was found only 4% of the N applied,it rose up to 30% when the rate of application increased to 80kg N/ ha.(5) The nitrification inhibitor,CCC,seemed to enhance N loss of urea rather than reduce it,and did not show any benefit effect in improving the yield efficiency of urea,which is presumably due to the high potential of ammonia volatilization in the soil and climatic conditions under investigation.展开更多
Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains max...Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains maximum content of organic carbon and minimum soil salinity and silicate concentration. In this zone plenty of pneumatophores, below ground root and dense vegetation are found), Rooted region (It is situated in between Deep forest region and Un-rooted region. This region contains only pneumatophores but it is devoid of long roots and vegetations. It faces wave attack and tidal action less than that of Un-rooted region) and Un-rooted region (It is closest to river shore and faces maximum wave attack and tidal action;it contains minimum organic carbon but maximum soil salinity and silicate concentration. This zone is totally devoid of any roots, pneumatophores and vegetations) of Sundarban mangrove forest ecosystem, India revealed an interesting explanation. Soil urease activity showed a decreasing pattern with increase in depth from the deep forest region of the Sundarban forest ecosystem. Soil urease activity was found to be more sensitive to soil temperature and pH rather than soil salinity. This ensured that soil urease along with the microbes present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature. Soil ammonia concentration was found to be directly governed by the soil urease activity [The regression equation is Ammonia in soil = -1.64 + 0.0402 Urease Activity (R-Sq = 62.9%, P < 0.001, n = 41)].展开更多
The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing...The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.展开更多
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N ferti...Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.展开更多
Ammonia(NH3)volatilized from agricultural production and its secondary aerosols contribute greatly to air pollution.Different long-term crop straw management practices may significantly affect the soil fertility and s...Ammonia(NH3)volatilized from agricultural production and its secondary aerosols contribute greatly to air pollution.Different long-term crop straw management practices may significantly affect the soil fertility and soil nitrogen cycle,however,the effect on NH3 volatilization has not been well studied.Therefore,a one-year field experiment was conducted to evaluate the effect of straw incorporation on NH3 volatilization from subtropical calcareous agricultural soil from a longterm perspective,including four treatments:synthetic fertilizer(CK);synthetic fertilizer incorporation with 100%or 50%of the previous season’s crop straw(SI1 and SI2,respectively);and synthetic fertilizer incorporation with 50%burned crop straw(SI2B).Soil NH3 volatilizations were monitored through a wheat–maize rotation year by using a dynamic chamber method.The results demonstrated that NH3 volatilization primarily occurred within 38 days and 7–10 days following nitrogen fertilization events for the wheat and maize seasons,respectively.Different crop straw management practices mainly impacted the NH3 flux of the basal fertilization rather than the topdressing fertilization;long-term crop straw incorporation effectively lowered NH3 loss(35.1%for SI1 and 16.1%for SI2 compared to CK;and the inhibiting effect increased with increasing straw amount,possibly contributed by the high straw carbon/nitrogen ratio,and enhanced microbial activity,which contributed to inorganic nitrogen immobilization and lower ammonium content in the topsoil.However,SI2B significantly increased(29.9%)the annual NH3 flux compared with SI2,indicating that long-term 100%straw incorporation could be a promising straw management practice for mitigating NH3 loss and increasing soil fertility.展开更多
The diversification of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities and their potential nitrification activity (PNA) on a large scale have not been well documented. In this work, se...The diversification of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities and their potential nitrification activity (PNA) on a large scale have not been well documented. In this work, seven paddy soils from different geographic regions in Sichuan, P. R. China were selected to determine the spatial distribution of the activities, abundances and community compositions of AOB and AOA. PNA varied greatly among paddy soils, and was positively correlated with soil pH (P< 0.05). The abundance of AOA was 81.1 to 1 670.0 times more than that of AOB, which indicates paddy soil environments favor the growth of AOA. Denaturing gradient gel electrophoresis fingerprints of amoA genes exhibited distinct spatial differences in AOA compositions rather than in AOB compositions. Sequencing analysis revealed that acidic soils were dominated by AOA within marine group 1.1 a-associated lineage, whereas the soil group 1.1b lineage AOA predominated in neutral and alkaline soils. Both nitrosopira cluster 3-like and Nitrosomonas cluster 7-like AOB dominated the AOB communities in the paddy soils. Redundancy analysis suggested that soil NH4^+-N content was the most significant driver determining the AOB community structure, while no significant correlation between AOA community structure and soil properties was found. The findings highlight that the activity and composition of ammonia oxidizers exhibit spatial variations in complex paddy fields due to the joint influence of soil variables associated with pH and N availability.展开更多
Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to...Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years.展开更多
Soil nitrification is mediated by ammonia-oxidizing archaea (AOA) and bacteria (AOB), which occupy different specialized ecological niches. However, little is known about the diversification of AOA and AOB communities...Soil nitrification is mediated by ammonia-oxidizing archaea (AOA) and bacteria (AOB), which occupy different specialized ecological niches. However, little is known about the diversification of AOA and AOB communities in a large geographical scale. Here, eight paddy soils collected from different geographic regions in China were selected to investigate the spatial distribution of AOA and AOB, and their potential nitrification activity (PNA). The result showed that the abundance of AOA was predominant over AOB, indicating that the rice fields favor the growth of AOA. PNA highly varied from 0.43 to 3.57 μg NOX-N·g·dry·soil·h-1, and was positively related with soil NH3 content, the abundance of AOA community, and negatively related with the diversity of AOB community (P amoA genes revealed remarkable differences in the compositions of AOA and AOB community. Phylogenetic analyses of amoA genes showed that Nitrosospiracluster-3-like and Nitrosomonas cluster 7-like AOB extensively dominated the AOB communities, and 54d9-like AOA within the soil group 1.1b predominated in AOA communities in paddy soils. Redundancy analysis suggested that the spatial variations of AOA community structure were influenced by soil TN content (P < 0.01), while no significant correlation between AOB community structure and soil properties was found. Findings highlight that ammonia oxidizers exhibit spatial variations in complex paddy fields due to the joint influence of soil variables associated with N availability.展开更多
Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea(AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure an...Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea(AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure and ammonia-oxidation capacity of AOA communities in biological soil crusts(BSCs) of desert ecosystems remain poorly understood.Here, we utilized Illumina MiSeq sequencing and microbial functional gene array(GeoChip 5.0) to assess the above changes along a 51-year revegetation chronosequence in the Tengger Desert, China. The results showed a significant difference in AOA-community richness between 5-year-old BSCs and older ones. The most dominant phylum during BSC development was Crenarchaeota, and the corresponding species were ammonia-oxidizing_Crenarchaeote and environmental_samples_Crenarchaeota. Network analysis revealed that the positive correlations among dominant taxa increased, and their cooperation was reinforced in AOA communities during BSC succession. Redundancy analysis showed that the dominant factor influencing the change in AOA-community structure was soil texture. GeoChip 5.0 indicated that the amoA gene abundances of AOA and ammonia-oxidizing bacteria(AOB) were basically the same, demonstrating that AOA and AOB played an equally important role during BSCs development. Our study of the long-term succession of BSC demonstrated a persistent response of AOA communities to revegetation development in desert ecosystems.展开更多
The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and tra...The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.展开更多
In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of env...In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4+-N content, NO3-N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the 13-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NHa+-N and NO3--N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics.展开更多
基金the author is wishing to express his gratitude to the National Natural Science Foundation of China(2002CB410807)for subsiding this research.
文摘Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission that was measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g /day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the rice- growing season. These magnitudes of loss of N appear to be most important for environmental point of view.
文摘Effective one-stage method of urea preparation by catalytic oxidative carbonylation of ammonia in liquid phase is developed. The method allows to prepare urea with productivity of-530 g/(L·h) in sufficiently mild conditions (total pressure -30 bar, 45 ℃). The process is characterized by high selectivity (near 100%) i.e. byproducts separation is not needed. Almost all CO is consumed during the process, this substantially diminishes the waste-gas purification costs and raises the process environmental characteristics; the only byproduct is water.
文摘Ammonia volatilization loss and ^15N balance were studied in a rice field at three different stages after urea application in Taihu Lake area with a micrometeorological technique. Factors such as climate and the NH4^+-N concentration in the field floodwater affecting ammonia loss were also investigated. Results show that the ammonia loss by volatilization accounted for 18.6%-38.7% of urea applied at different stages, the greatest loss took place when urea was applied at the tillering stage, the smallest at the ear bearing stage, and the intermediate loss at the basal stage. The greatest loss took place within 7 d following the fertilizer application. Ammonia volatilization losses at three fertilization stages were significantly correlated with the ammonium concentration in the field floodwater after the fertilizer was applied. ^15N balance experiment indicated that the use efficiency of urea by rice plants ranged between 24.4% and 28.1%. At the early stage of rice growth, the fertilizer nitrogen use efficiency was rather low, only about 12%. The total amount of nitrogen lost from different fertilization stages in the rice field was 44.1%-54.4%, and the ammonia volatilization loss was 25.4%-33.3%. Reducing ammonia loss is an important treatment for improving N use efficiency.
文摘Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred mainly in the first week after applying N fert…
文摘Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using ^15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.
基金supported by the National Natural Science Foundation of China(31861133018,41830751,42107320)the Hainan University Startup Fund,China(KYQD(ZR)-20098).
文摘The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China(2012ZX07102-003)~~
文摘[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.
基金This study is supported by the National Natural Science Foundation of China(No.51579168,51249002)the Natural Science Foundation of Shanxi Province of China(No.201601D011053)+1 种基金the Graduate Education Innovation Program of Shanxi Province of China(No.2016BY064)the Scientific and Technological Project of Shanxi Province of China(No.20140311016-6).
文摘The traditional qualitative analysis of the individual factors on the kinetic and thermodynamic parameters cannot sufficiently reveal the mechanism underlying ammonia volatilization in soil.This study aimed to determine the effects of temperature,moisture content,and their interaction on the kinetic and thermodynamic parameters,which revealed the key control mechanism underlying ammonia volatilization,modified the traditional Arrhenius model,and established a quantitative prediction model of cumulative NH_(3)-N loss(CNL).Laboratory culture experiments were conducted under different temperatures(T)(15℃,20℃,25℃and 35℃)and moisture contents(θ)(60%,80%,and 100%field capacities).Soil ammonia volatilization was also measured every 2 d.Results showed that the effects of individual factors and their interaction on the values of reaction rate(K_(N)),Activation free energy(ΔG),and activation entropy(ΔS)followed the descending order of T>θ>T·θ,whereas those of activation enthalpy(ΔH)and activation degree(lgN)followed the descending order ofθ>T>T·θ.The interaction showed significant effect on K_(N)value and insignificant effect on all the thermodynamic parameters.The effects of water and temperature were mainly observed during the preparatory stage and the most critical transition state stage of the chemical reaction,respectively.Given thatΔH>0,ΔG>0,andΔS>0,ammonia volatilization is found to be an endothermic reaction controlled by enthalpy.The new K_(N)(T)-2 model with the determination coefficient(R^(2))of 0.999 was more accurate than the traditional Arrhenius model with the R^(2)of 0.936.The new NH_(3)(T,θ)model with the mean absolute percentage error(MAPE)of 4.17%was more accurate than the traditional NH_(3)(T)model with the MAPE of 7.11%.These results supplemented the control mechanism underlying ammonia volatilization in soil fertilized with urea and improved the prediction accuracy of CNL.
文摘Ammonia volatilization was measured with a continuous air flow enclosure method from a winter wheat field in the Experimental Farm of Jurong Agricultural School to investigate its main influencing factors. The experiment with five treatments in triplicate, no N (control), 100, 200 and 300 kg N ha-1 with rice straw cover at a rate of 1500 kg ha-1 and 200 kg N ha-1 without rice straw, started when the winter wheat was sown in 1994. Sixty percent of the total amount of N applied was hasal and 40% was top-dressed. The measurement of ammonia volatilization was immediately conducted after urea was top-dressed on soil surface at wheat elongation stage in spring of 1996 and 1997. The results showed that there was a diurnal variation of ammonia volatilization rate from the winter wheat field, which synchronized with air temperature. N losses through ammonia volatilization increased with increasing N application rate, but the ratio of N lost through ammonia volatilization to applied N was not significantly affected by N application rate. The coverage of rice straw had no significant effect on ammonia volatilization. Soil moisture and rain events after urea was top-dressed affected ammonia volatilization significantly.
文摘Field experiments were conducted in a maize (Zea mays L.)field of a calcareous fluvo-aquic soil in North China Plain for studying the fate and ammonia loss of urea-N applied at seedling stage,as well as the effectiveness of coated calcium carbide(CCC) in reducing N loss and in improving the yield efficiency of urea.Results show that:(1) For the surface-broadcast treatment ammonia volatilization (measured with micro-meteorological technique)took place quickly,reached the peak 20-26hr after application,and then declined gradually;the cumulative ammonia loss approached the maximum 188hr after application (30% of the N applied),and increased only to 32% 284 hr after application;the latter accounted for 71% of the total loss (45% of applied N).(2) In the case of point placement at a depth of 5-10 cm,ammonia loss 188hr after application was only 12% of the N applied,accounting for 40% of the total loss.(3) There was no difference in total loss between the application depths of 6cm and 10 cm,the loss of them was 30% and 29%,respectively.(4) Total loss of N applied at lower rate (40kg N/ha)with point deep placement at 6cm depth was found only 4% of the N applied,it rose up to 30% when the rate of application increased to 80kg N/ ha.(5) The nitrification inhibitor,CCC,seemed to enhance N loss of urea rather than reduce it,and did not show any benefit effect in improving the yield efficiency of urea,which is presumably due to the high potential of ammonia volatilization in the soil and climatic conditions under investigation.
文摘Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains maximum content of organic carbon and minimum soil salinity and silicate concentration. In this zone plenty of pneumatophores, below ground root and dense vegetation are found), Rooted region (It is situated in between Deep forest region and Un-rooted region. This region contains only pneumatophores but it is devoid of long roots and vegetations. It faces wave attack and tidal action less than that of Un-rooted region) and Un-rooted region (It is closest to river shore and faces maximum wave attack and tidal action;it contains minimum organic carbon but maximum soil salinity and silicate concentration. This zone is totally devoid of any roots, pneumatophores and vegetations) of Sundarban mangrove forest ecosystem, India revealed an interesting explanation. Soil urease activity showed a decreasing pattern with increase in depth from the deep forest region of the Sundarban forest ecosystem. Soil urease activity was found to be more sensitive to soil temperature and pH rather than soil salinity. This ensured that soil urease along with the microbes present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature. Soil ammonia concentration was found to be directly governed by the soil urease activity [The regression equation is Ammonia in soil = -1.64 + 0.0402 Urease Activity (R-Sq = 62.9%, P < 0.001, n = 41)].
基金supported by the Natural Science Foundation Project of Shandong Provincial(Grant No.ZR2019MEE041)the open funds of National Engineering Laboratory of Mobile Source Emission Control Technology(Grant No.NELMS2019A01).
文摘The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-413-3)National Natural Science Foundation of China (No.30390080)National Basic Research Program of China (No.2005CB121108)
文摘Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.
基金This work was supported by the National Major Science and Technology Program for Water Pollution Control and Treatment[grant number 2017ZX07101001]the National Natural Science Foundation of China[grant numbers 41573079 and 41675144]the Chinese Academy of Sciences Pioneer Hundred Talents Program.
文摘Ammonia(NH3)volatilized from agricultural production and its secondary aerosols contribute greatly to air pollution.Different long-term crop straw management practices may significantly affect the soil fertility and soil nitrogen cycle,however,the effect on NH3 volatilization has not been well studied.Therefore,a one-year field experiment was conducted to evaluate the effect of straw incorporation on NH3 volatilization from subtropical calcareous agricultural soil from a longterm perspective,including four treatments:synthetic fertilizer(CK);synthetic fertilizer incorporation with 100%or 50%of the previous season’s crop straw(SI1 and SI2,respectively);and synthetic fertilizer incorporation with 50%burned crop straw(SI2B).Soil NH3 volatilizations were monitored through a wheat–maize rotation year by using a dynamic chamber method.The results demonstrated that NH3 volatilization primarily occurred within 38 days and 7–10 days following nitrogen fertilization events for the wheat and maize seasons,respectively.Different crop straw management practices mainly impacted the NH3 flux of the basal fertilization rather than the topdressing fertilization;long-term crop straw incorporation effectively lowered NH3 loss(35.1%for SI1 and 16.1%for SI2 compared to CK;and the inhibiting effect increased with increasing straw amount,possibly contributed by the high straw carbon/nitrogen ratio,and enhanced microbial activity,which contributed to inorganic nitrogen immobilization and lower ammonium content in the topsoil.However,SI2B significantly increased(29.9%)the annual NH3 flux compared with SI2,indicating that long-term 100%straw incorporation could be a promising straw management practice for mitigating NH3 loss and increasing soil fertility.
基金Funded by the National Natural Science Foundation of China (No.41606142)the Fundamental Research Funds of China West Normal University (No.463140 and No.412554)
文摘The diversification of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities and their potential nitrification activity (PNA) on a large scale have not been well documented. In this work, seven paddy soils from different geographic regions in Sichuan, P. R. China were selected to determine the spatial distribution of the activities, abundances and community compositions of AOB and AOA. PNA varied greatly among paddy soils, and was positively correlated with soil pH (P< 0.05). The abundance of AOA was 81.1 to 1 670.0 times more than that of AOB, which indicates paddy soil environments favor the growth of AOA. Denaturing gradient gel electrophoresis fingerprints of amoA genes exhibited distinct spatial differences in AOA compositions rather than in AOB compositions. Sequencing analysis revealed that acidic soils were dominated by AOA within marine group 1.1 a-associated lineage, whereas the soil group 1.1b lineage AOA predominated in neutral and alkaline soils. Both nitrosopira cluster 3-like and Nitrosomonas cluster 7-like AOB dominated the AOB communities in the paddy soils. Redundancy analysis suggested that soil NH4^+-N content was the most significant driver determining the AOB community structure, while no significant correlation between AOA community structure and soil properties was found. The findings highlight that the activity and composition of ammonia oxidizers exhibit spatial variations in complex paddy fields due to the joint influence of soil variables associated with pH and N availability.
基金the National Natural Science Foundation of China(40801097)the Natural Science Foundation of Fujian Province,China(2012J01107)
文摘Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years.
文摘Soil nitrification is mediated by ammonia-oxidizing archaea (AOA) and bacteria (AOB), which occupy different specialized ecological niches. However, little is known about the diversification of AOA and AOB communities in a large geographical scale. Here, eight paddy soils collected from different geographic regions in China were selected to investigate the spatial distribution of AOA and AOB, and their potential nitrification activity (PNA). The result showed that the abundance of AOA was predominant over AOB, indicating that the rice fields favor the growth of AOA. PNA highly varied from 0.43 to 3.57 μg NOX-N·g·dry·soil·h-1, and was positively related with soil NH3 content, the abundance of AOA community, and negatively related with the diversity of AOB community (P amoA genes revealed remarkable differences in the compositions of AOA and AOB community. Phylogenetic analyses of amoA genes showed that Nitrosospiracluster-3-like and Nitrosomonas cluster 7-like AOB extensively dominated the AOB communities, and 54d9-like AOA within the soil group 1.1b predominated in AOA communities in paddy soils. Redundancy analysis suggested that the spatial variations of AOA community structure were influenced by soil TN content (P < 0.01), while no significant correlation between AOB community structure and soil properties was found. Findings highlight that ammonia oxidizers exhibit spatial variations in complex paddy fields due to the joint influence of soil variables associated with N availability.
基金supported financially by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA2003010301)the National Natural Science Foundation of China (Grant No. 41621001)
文摘Metagenomic studies have demonstrated the existence of ammonia-oxidizing archaea(AOA) and revealed they are responsible for ammoxidation in some extreme environments. However, the changes in compositional structure and ammonia-oxidation capacity of AOA communities in biological soil crusts(BSCs) of desert ecosystems remain poorly understood.Here, we utilized Illumina MiSeq sequencing and microbial functional gene array(GeoChip 5.0) to assess the above changes along a 51-year revegetation chronosequence in the Tengger Desert, China. The results showed a significant difference in AOA-community richness between 5-year-old BSCs and older ones. The most dominant phylum during BSC development was Crenarchaeota, and the corresponding species were ammonia-oxidizing_Crenarchaeote and environmental_samples_Crenarchaeota. Network analysis revealed that the positive correlations among dominant taxa increased, and their cooperation was reinforced in AOA communities during BSC succession. Redundancy analysis showed that the dominant factor influencing the change in AOA-community structure was soil texture. GeoChip 5.0 indicated that the amoA gene abundances of AOA and ammonia-oxidizing bacteria(AOB) were basically the same, demonstrating that AOA and AOB played an equally important role during BSCs development. Our study of the long-term succession of BSC demonstrated a persistent response of AOA communities to revegetation development in desert ecosystems.
基金supported by Special Scientific Research Expenditure for Public Charity Industry of Ministry of Water Resources(No.201501008)Institute of Resources and Environment of North China University of Water Resources and Electric Power
文摘The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.
基金the National Natural Science Foundation of China(31101504 and 31171917)the Postdoctoral Science Foundation of China(2011M500575)+1 种基金the China Agricultural Research System(CARS-28)the Shenyang Municipal Science and Technology Research Projects,China(F12-109-3-00)for their financial support
文摘In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4+-N content, NO3-N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the 13-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NHa+-N and NO3--N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics.