The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p...The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.展开更多
Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low...Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low exhaust temperatures. The activity of CuSAPO-34 at 175°C is significantly degraded by urea exposure, and 300°C is required for regeneration. Through in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and temperature-programmed hydrolysis studies, the dominant stable deposit at 175°C is identified as biuret, which can be eliminated at 300°C. The urea-derived deactivation and regeneration mechanisms of Cu-SAPO-34 were compared with those of anatase-supported catalysts.展开更多
Adsorption behavior of urea on silver electrode and the influence of thiourea on its adsorption in snlphuric acid solution were illvestigated by polarization curves and Surface Enhanccd Raman Spectroscopy. Urea was fo...Adsorption behavior of urea on silver electrode and the influence of thiourea on its adsorption in snlphuric acid solution were illvestigated by polarization curves and Surface Enhanccd Raman Spectroscopy. Urea was found to undergo a condensation reaction on roughcned silvcr electrode. Billret was the condensation compound, and was adsorbed in the protonatcd forrn on the silver surface. Obvious synergistic mechanism between thiourea and protonated biuret was proposed.展开更多
基金supported by the National Natural Science Foundation of China(31861133018,41830751,42107320)the Hainan University Startup Fund,China(KYQD(ZR)-20098).
文摘The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.
基金supported by the projects of China Science and Technology Exchange Center(No.2016YFE0126600)the National Key R&D Program of China(No.2017YFC0211102)the Key Laboratory of Advanced Materials of Ministry of Education(No.2016AML01)
文摘Selective catalytic reduction(SCR) with urea catalyzed by Cu-SAPO-34 is an effective method to eliminate NO_x from diesel exhaust. However, urea-related deposits may form during cold-start and urban driving due to low exhaust temperatures. The activity of CuSAPO-34 at 175°C is significantly degraded by urea exposure, and 300°C is required for regeneration. Through in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and temperature-programmed hydrolysis studies, the dominant stable deposit at 175°C is identified as biuret, which can be eliminated at 300°C. The urea-derived deactivation and regeneration mechanisms of Cu-SAPO-34 were compared with those of anatase-supported catalysts.
文摘Adsorption behavior of urea on silver electrode and the influence of thiourea on its adsorption in snlphuric acid solution were illvestigated by polarization curves and Surface Enhanccd Raman Spectroscopy. Urea was found to undergo a condensation reaction on roughcned silvcr electrode. Billret was the condensation compound, and was adsorbed in the protonatcd forrn on the silver surface. Obvious synergistic mechanism between thiourea and protonated biuret was proposed.