A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The ne...A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
As changes in hard or soft oral tissues normally have a microbiological component,it is important to develop diagnostic techniques that support clinical evaluation,without destroying microbio-logical formation.The opt...As changes in hard or soft oral tissues normally have a microbiological component,it is important to develop diagnostic techniques that support clinical evaluation,without destroying microbio-logical formation.The optical coherence tomography(OCT)represents an alternative to analyze tissues and microorganisms without the need for processing.This imaging technique could be defined as a fast,real-time,in situ,and non-destructive method.Thus,this study proposed the use of the OCT to visualize biofilm by Candida albicans in reline resins for removable prostheses.Three reline resins(Silagum-Comfort,Coe Comfort,and Soft-Confort),with distinct char-acteristics related to wa ter sorption and fungal inhibition were used.A total of 30 samples(10 for each resin group)were subjected to OCT scanning before and 96 h after inoculation with Candida albicans(URM 6547).The biofilm analysis was carried out through a 2D optical Callisto SD-OCT(930 nm)operated in the spectral domain.Then,the images were preprocessed using a3×3 Gaussian filter to remove the noise,and then Otsu binarization,allowing segmentation and pixel counting.The layer's biofilm formed was clearly defined and,indeed,its visualization is modified by water sorption of each material.Silagum-Comfort and Soft.Confort showed some similarities in the scattering of light between the clean and inoculated samples,in which,the latter samples presented higher values of light signal intensity.Coe-Comfort samples were the only ones that showed no di®erences between the clean or inoculated images.Therefore,the results of this study suggest that OCT is a viable technique to visualize the biolm in reline materials.Becausendings in the literature are still scarcely using the OCT technique to visualize biolm in reline resins,further studies are encouraged.It should not contain any references or displayed equations.展开更多
In this study,the 24 h tensile strength of new type acetone-urea-formaldehyde furan resin (nitrogen content 3%) was investigated by uniform design optimization.Four independent variables such as acetone:formaldehyde m...In this study,the 24 h tensile strength of new type acetone-urea-formaldehyde furan resin (nitrogen content 3%) was investigated by uniform design optimization.Four independent variables such as acetone:formaldehyde molar ratio (mol/mol),solution pH value,reaction temperature (℃) and reaction time (min) were considered in the experiments.U13(134) uniform design was employed and the equation of 24 h tensile strength model was obtained after 13 experimentations.The 24 h tensile strength was optimized by applying single factor experiments and stepwise non-linear regression analysis.Minitab (Minitab 15 trial version) and MATLAB (R2010a trial version) were used for data analysis.The t-value and p-value indicate that the major impact factors include the interaction effect of solution pH value and reaction temperature (X2X3),the linear terms of acetone:formaldehyde molar ratio (X1),reaction time (X4) followed by the square effects of acetone/formaldehyde molar ratio (X1X1).The optimized results were achieved with the acetone:formaldehyde molar ratio (mol/mol) at 3:1,solution pH value at 6.0,reaction temperature at 70℃,and reaction time at 140 min,respectively.This method can not only significantly reduce the number and cost of the tests,but also provide a good experimental design strategy for the development of furan resin.The investigation shows that the predicted results of 24 h tensile strength are consistent well with the experimental ones.展开更多
This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF...This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.展开更多
The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different type...The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different types of polymers and additives or changing in theirproportion of the blends, the gelling viscosity, starting point of gelling and other propertiesof the IPN can be controlled.展开更多
Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Repu...Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.展开更多
Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent eliminat...Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent elimination or monomer purification to obtain a relatively clean precursor.It has potential application in the field of aerospace due to its low expansion coefficient,high weather resistance,high carbon yield,good mechanical strength,and excellent ablation resistance[1].It can be mixed with various other resins or polymers to produce new resins with a broad range of applications[2-3].展开更多
A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfo...A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfone)(PES-C)on E51/DETDA epoxy and its carbon fiber composites(CFCs).Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island(of dispersed phase)structures to bi-continuous structures(of the matrix)as the PES-C content increased,which is associated with reaction-induced phase separation.After adding 15 phr PES-C,the glass transition temperature(T_(g))of the blends increased by 51.5℃,and the flexural strength,impact strength and fracture toughness of the blends were improved by 41.1%,186.2%and 42.7%,respectively.These improvements could be attributed to the phase separation structure of the PES-C/epoxy sys-tem.A PES-C film was used to improve the mode-II fracture toughness(G_(IIC))of CFCs.The G_(IIC) value of the 7μm PES-C film toughened laminate was improved by 80.3%compared to that of the control laminate.The increase in G_(IIC) was attributed to cohesive failure and plastic deformation in the interleaving region.展开更多
To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based...To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based on the tensile test,flexural creep test,and laser scanning confocal microscopy.The curing characteristics and the mechanical performance of recycled asphalt with different epoxy contents were explored.The results show that the low-temperature performance,ductility,and strength of the aged asphalt binder were significantly improved when the epoxy content reached 40%.The curing time of epoxy-recycled asphalt should be at least 4 d to ensure the formation of good internal spatial network structure.展开更多
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emiss...Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.展开更多
Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res...The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.展开更多
Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area mo...Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.展开更多
Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(U...Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.展开更多
Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still...Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins.展开更多
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and a...Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.展开更多
基金the Graduate Developing Innovation Project of Jiangsu Province of China (No. CXZZ11-0306)the Major State Basic Research and Development Program of China (No.2007CB209400)
文摘A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
基金This study is a palrt of the INCT/INFO(National Institutes of Science and Technology,Photonics National Institute-465.763/2014-6)is sup-ported by the CNPq/MCTI(National Council of Technological and Scientific Development and Ministry of Science Technology and Innov ation)+1 种基金the PRONEX program(Center of Excellence on Biophotonics and Nanophotonics-APQ-0504-1.05/14)sponsored by FACEPE/CNPq(Founda-tion for Science and Technology of Pernambuco State and National Council of Technological and Scientific Development).
文摘As changes in hard or soft oral tissues normally have a microbiological component,it is important to develop diagnostic techniques that support clinical evaluation,without destroying microbio-logical formation.The optical coherence tomography(OCT)represents an alternative to analyze tissues and microorganisms without the need for processing.This imaging technique could be defined as a fast,real-time,in situ,and non-destructive method.Thus,this study proposed the use of the OCT to visualize biofilm by Candida albicans in reline resins for removable prostheses.Three reline resins(Silagum-Comfort,Coe Comfort,and Soft-Confort),with distinct char-acteristics related to wa ter sorption and fungal inhibition were used.A total of 30 samples(10 for each resin group)were subjected to OCT scanning before and 96 h after inoculation with Candida albicans(URM 6547).The biofilm analysis was carried out through a 2D optical Callisto SD-OCT(930 nm)operated in the spectral domain.Then,the images were preprocessed using a3×3 Gaussian filter to remove the noise,and then Otsu binarization,allowing segmentation and pixel counting.The layer's biofilm formed was clearly defined and,indeed,its visualization is modified by water sorption of each material.Silagum-Comfort and Soft.Confort showed some similarities in the scattering of light between the clean and inoculated samples,in which,the latter samples presented higher values of light signal intensity.Coe-Comfort samples were the only ones that showed no di®erences between the clean or inoculated images.Therefore,the results of this study suggest that OCT is a viable technique to visualize the biolm in reline materials.Becausendings in the literature are still scarcely using the OCT technique to visualize biolm in reline resins,further studies are encouraged.It should not contain any references or displayed equations.
文摘In this study,the 24 h tensile strength of new type acetone-urea-formaldehyde furan resin (nitrogen content 3%) was investigated by uniform design optimization.Four independent variables such as acetone:formaldehyde molar ratio (mol/mol),solution pH value,reaction temperature (℃) and reaction time (min) were considered in the experiments.U13(134) uniform design was employed and the equation of 24 h tensile strength model was obtained after 13 experimentations.The 24 h tensile strength was optimized by applying single factor experiments and stepwise non-linear regression analysis.Minitab (Minitab 15 trial version) and MATLAB (R2010a trial version) were used for data analysis.The t-value and p-value indicate that the major impact factors include the interaction effect of solution pH value and reaction temperature (X2X3),the linear terms of acetone:formaldehyde molar ratio (X1),reaction time (X4) followed by the square effects of acetone/formaldehyde molar ratio (X1X1).The optimized results were achieved with the acetone:formaldehyde molar ratio (mol/mol) at 3:1,solution pH value at 6.0,reaction temperature at 70℃,and reaction time at 140 min,respectively.This method can not only significantly reduce the number and cost of the tests,but also provide a good experimental design strategy for the development of furan resin.The investigation shows that the predicted results of 24 h tensile strength are consistent well with the experimental ones.
基金financed under the scheme of Laboratory of Excellence ARBRE by the French Agence Nationale de la Recherche(ANR).
文摘This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.
文摘The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different types of polymers and additives or changing in theirproportion of the blends, the gelling viscosity, starting point of gelling and other propertiesof the IPN can be controlled.
基金the financial support from the National Key R&D Program of China(2018YFF0215400)grants from the Gemmological Institute of the China University of Geosciences in Wuhan。
文摘Amber can emit room temperature phosphorescence(RTP)under the well-known 365 nm fluorescence ultraviolet light.This paper is devoted to the phosphorescence study of 20 pieces of amber materials from the Dominican Republic,Mexico,Baltic sea,Myanmar,and Fushun,China.The results show that amber from the same geographic origin has similar shape in phosphorescence spectra.However,the shape of the amber phosphorescence spectra varies depending on their different localities.Burmite(amber from Myanmar)and Fushun amber have a bright yellow phosphorescence with a long lifetime,while the Dominican and Mexican ones are weaker and last shorter.The irradiation of Baltic amber becomes faint or even inert.Phosphorescence spectral Gaussian fitting results suggest an emission maximum near 550 nm in most amber samples.Their phosphorescence lifetime,analyzed through the exponential function fitting,is up to 1 second in Burmite and Fushun samples,shorter in the Dominican and Mexican ones,about 0.230 s,and the shortest in Baltic amber,close to 0.151 s.These variations of phosphorescence lifetime and intensity are related to the relative geological ages of these amber.It indicated that the phosphorescence agent was probably formed during the long geological time.While the anomaly occurred in Baltic amber,the only one found in a sea secondary deposit form,it demonstrated that the terrestrial geological environment these amber preserved has prevented the phosphorescence agent to be deactivated.
基金Supported by Shanghai Aerospace Science and Technology Innovation Fund Project (SAST 2022-097)。
文摘Benzoxazine resin,being a new type of phenolic resin deve-loped to overcome the shortcomings of traditional phenolic resins,has been synthesized from phenol,formaldehyde and amine,and does not require solvent elimination or monomer purification to obtain a relatively clean precursor.It has potential application in the field of aerospace due to its low expansion coefficient,high weather resistance,high carbon yield,good mechanical strength,and excellent ablation resistance[1].It can be mixed with various other resins or polymers to produce new resins with a broad range of applications[2-3].
文摘A toughener that can effectively improve the interlaminar toughness in carbon fiber composites is crucial for various applications.We investigated,the toughening effects of phenolphthalein-based cardo poly(ether sulfone)(PES-C)on E51/DETDA epoxy and its carbon fiber composites(CFCs).Scanning electron microscopy showed that the phase structures of PES-C/epoxy blends change from island(of dispersed phase)structures to bi-continuous structures(of the matrix)as the PES-C content increased,which is associated with reaction-induced phase separation.After adding 15 phr PES-C,the glass transition temperature(T_(g))of the blends increased by 51.5℃,and the flexural strength,impact strength and fracture toughness of the blends were improved by 41.1%,186.2%and 42.7%,respectively.These improvements could be attributed to the phase separation structure of the PES-C/epoxy sys-tem.A PES-C film was used to improve the mode-II fracture toughness(G_(IIC))of CFCs.The G_(IIC) value of the 7μm PES-C film toughened laminate was improved by 80.3%compared to that of the control laminate.The increase in G_(IIC) was attributed to cohesive failure and plastic deformation in the interleaving region.
基金Funded by the National Natural Science Foundation of China(No.52378444)。
文摘To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based on the tensile test,flexural creep test,and laser scanning confocal microscopy.The curing characteristics and the mechanical performance of recycled asphalt with different epoxy contents were explored.The results show that the low-temperature performance,ductility,and strength of the aged asphalt binder were significantly improved when the epoxy content reached 40%.The curing time of epoxy-recycled asphalt should be at least 4 d to ensure the formation of good internal spatial network structure.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
文摘Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
基金financially supported by the National Natural Science Foundation of China(22178242)the Shanxi Provincial Key Research and Development Project(202102040201009).
文摘The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.
基金Supported by National Key Research and Development Project of China (Grant Nos.2018YFA0703300,52105300)National Natural Science Foundation of China (Grant No.52075215)+2 种基金Science and Technology Development Plan Project of Jilin Province of China (Grant No.20200201061JC)Science and Technology Research Project of Jilin Provincial Education Department of China (Grant No.JJKH20221021KJ)Changchun Municipal Key Research and Development Program of China (Grant No.21ZGN22)。
文摘Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.
基金supported by the Yunnan Provincial Natural Science Foundation (202201AU070222,202201AT070045,202101BD070001-074)Scientific Research Fund Project of Yunnan Provincial Department of Education (2022J0490)financed by the 111 Project (D21027).
文摘Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.
基金financially supported by National Natural Science Foundation of China(22008073,22078100,21878091)Shanghai Sailing Program(20YF1410600)。
文摘Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins.
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
基金supported by the Key Program of Applied and Basic Research in Yunnan Province(Grant No.202101AS070008)the National Natural Science Foundation of China(NSFC 31760187)+4 种基金supported by the 111 Project(D21027)the Yunnan Provincial Academician Workstation(YSZJGZZ-2020052)the Foreign Expert Workstation(202305AF150006)supported by the Scientific Research Foundation of Education Department of Yunnan Province(Grant Nos.2023J0696,2023Y0699)Foreign Talent Introduction Program of Science and Technology Department of Yunnan Province(Grant No.202305AO350002).
文摘Tannin foam is a new functional material.It can be widely applied to the automobile industry,construction industry,and packaging industry due to its wide range of raw materials,renewable,easily degraded,low cost and almost no pollution.Preparing tannin foam is a very complex process that includes high temperature,two phases,mechanical agitation,and phase change.To investigate the influence of the stirring velocity and paddle shape,simulation was calculated by making use of the volume of fluid(VOF)method and multiple reference frame(MRF)method in a three-dimensional flow field of tannin-based foaming precursor resin.The gas holdup and velocity magnitude were analysed with various conditions of mechanical velocities and paddle shape in the stirring flow field.The result shows the higher the velocity,the greater the disturbance and paddle shape between the eggbeater and the Rushton turbine,obviously the paddle shape of the eggbeater with a wider range of agitation,which can entrap more air into the tannin-based foaming precursor resin in a short time.Especially when the speed is 1500 rpm,the flow field of the Rushton turbine comes out of a ditch,which decreases the efficiency of mass transfer;there is less air to mix into the tannin-based foaming precursor resin,which causes unevenness.At the same time,the eggbeater shows the marvelous capability of hybrid as it has two vortexes and multiple cycles that make a difference from the Rushton turbine,which has only one vortex and two upper and lower loops;the structure makes the flow field more stable allowed evenness of flow field tannin-based foaming precursor resin.The results reveal that it is beneficial for tannin-based foaming precursor resin to use an eggbeater with a speed of 1500 rpm to reduce the consumption of resources while obtaining a uniform flow field.