OBJECTIVE There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism.We previously...OBJECTIVE There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism.We previously found that acute morphine treatment significantly increased uridine release in the dorsal striatum of mice,while the mechanism involved in morphine-induced uridine release and the role of uridine in morphine-induced neurobehavioral changes have not been understood.METHODS Uridine release in the dorsal striatum of mice was assessed by in vivo microdialysis coupled with high performance liquid chromatography(HPLC) after morphine treatment.Western blotting and immunofluorescence were used to evaluate the expression of uridine-related proteins.Morphine-induced neurobehavioral changes were assessed by locomotor activity,behavioral sensitization and conditioned place preference(CPP)test.The expression of NT5E,an extracellular enzyme involved in formation of nucleosides,including uridine,was specifically knocked down in the dorsal striatum of mice using adeno-associated virus(AAV)-mediated short hairpin RNA(shRNA).RESULTS Both acute and chronic morphine administration significantly increased uridine release in the dorsal striatum,and this was associated with upregulation of NT5E but not other uridine-related proteins.Inhibition of NT5E with APCP or shRNA markedly inhibited morphine-induced uridine release in the dorsal striatum and related neurobehavioral changes,including hyperlocomotor activity,behavioral sensitization and CPP.CONCLUSION The present study increases our understanding of the contribution of NT5E in regulating morphine-induced neurobehavioral changes,at least as related to uridine,and suggests that NT5E may be a novel therapeutic target to manage morphine abuse.展开更多
Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was app...Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.展开更多
BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism o...BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in the P2R-mediated calcium signaling pathway in nociceptive trigemJnal ganglion neurons. DESIGN, TIME AND SETTING: In vitro experiments were conducted at the Patch-Clamp Laboratory of Comprehensive Experiment Center of Anhui Medical University, China from September 2008 to June 2009. MATERIALS: Thapsigargin, caffeine, suramin, and adenosine 5'-triphosphate were purchased from Sigma, USA. METHODS: Using Fura-2-based microfluorimetry, intracellular calcium concentration ([Ca^2+]i) was measured in freshly isolated adult rat small trigeminal ganglion neurons before and after drug application. MAIN OUTCOME MEASURES: Fluorescent intensities were expressed as the ratio F340/F380 to observe [Ca^2+]i changes. RESULTS: In normal extracellular solution and Ca^2+-free solution, application of thapsigargin (1 μmol/L), a sarcoplasmic reticulum Ca^2+ pump adenosine 5'-triphosphate inhibitor, as well as caffeine (20 mmol/L), a ryanodine receptor agonist, triggered [Ca^2+]i increase in small trigeminal ganglion neurons. A similar response was induced by application of adenosine 5'-triphosphate (100 μmol/L). In Ca^2+-free conditions, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were inhibited in cells pre-treated with thapsigargin (P 〈 0.01), but not by caffeine (P 〉 0.05). In normal, extracellular solution, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were partly inhibited in cells pre-treated with thapsigargin (P 〈 0.05). CONCLUSION: Inositol-1,4, 5-triphosphate (IP3)- and ryanodine-sensitive Ca^2+ stores exist in rat nociceptive trigeminal ganglion neurons. Two pathways are involved in the purinoreceptor-mediated [Ca^2+]i rise observed in nociceptive trigeminal ganglion neurons. One pathway involves the metabotropic P2Y receptors, which are associated with the IP3 sensitive Ca^2+store, and the second pathway is coupled to ionotropic P2X receptors that induce the Ca^2+ influx.展开更多
An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence prop...An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.展开更多
Recombinant Escherichia coli pUDP,which overexpressed uridine phosphorylase(UPase),was constructed.0.5 mmol·L 1lactose had a similar induction effect as the commonly used inducer IPTG during 2.5-5.5 h of cell g...Recombinant Escherichia coli pUDP,which overexpressed uridine phosphorylase(UPase),was constructed.0.5 mmol·L 1lactose had a similar induction effect as the commonly used inducer IPTG during 2.5-5.5 h of cell growth.The lactose-induced UPase was stable at 50°C.Wet cells of pUDP was used as catalyst to biosynthesize 5-fluorouridine from 30 mmol·L 1uridine and 5-fluorouracil in phosphate buffer(pH 7.0)catalyzed at 50°C for 1.5 h and the yield of 5-fluorouridine was higher than 68%.Under the optimum reaction conditions for production of 5-fluorouridine,5-methyluridine and azauridine were synthesized from uridine by pUDP,the yield was 61.7%and 47.2%respectively.Deoxynucleosides were also synthesized by pUDP,but the yield was only about 20%.展开更多
Background: Molnupiravir, N4-hydroxycytidine-5’-isopropyl ester, is an oral prodrug of N4-deoxycytidine (NHC), a nucleoside analog, which has in vitro activity against SARS-CoV-2. NHC is phosphorylated in cells to NH...Background: Molnupiravir, N4-hydroxycytidine-5’-isopropyl ester, is an oral prodrug of N4-deoxycytidine (NHC), a nucleoside analog, which has in vitro activity against SARS-CoV-2. NHC is phosphorylated in cells to NHC triphosphate (NHC-TP), which is incorporated into viral RNA, leading to epigenetic catastrophe of the viral genome and inhibition of viral replication. The antiviral activity against SARS-CoV-2 is dependent on the number of molecules of NHC-TP incorporated into viral RNA. Clinical studies in patients with COVID-19 showed that treatment with molnupiravir for 5 days decreases the risk of hospitalization and death as compared with placebo. Objective: It should be possible to enhance the antiviral activity of NHC-TP against SARS-CoV-2 by the use of the biochemical modulator, 3-deazauridine (3DU). 3DU is an inhibitor of CTP synthetase. Inhibition of this enzyme results in a reduction in the intracellular pool size of CTP. Since NHC-TP competes with CTP for incorporation into viral RNA in the reaction catalyzed by the SARS-CoV-2 viral RNA-dependent RNA polymerase, the reduction in the level of CTP should result in a significant enhancement of the incorporation of NHC-TP into viral RNA and an enhancement of its antiviral activity. Methods: Analysis of the publications of 3DU and cytosine nucleoside analogues support the hypothesis that 3DU enhances the pharmacological action of the analogues. Results: 3-DU increased the incorporation of 5-azacytidine into RNA and 5-aza-deoxycytidine into DNA of leukemic cells with an enhancement of their antineoplastic action. 3-DU potentiated the antiviral activity against HIV-1 activity by the cytosine nucleoside analogues: 2’-deoxy-3’-thiacytidine (3TC;lamivudine) and 2’,3’-dideoxycytidine (ddC). This anti-HIV-1 activity of 3DU was associated with a reduction in the intracellular pool size of dCTP and increased incorporation of triphosphates of 3TC and ddC into DNA by the HIV-1 reverse transcriptase. The reduction of CTP levels in cells by 3-DU also leads to a reduction in dCTP since CTP is its precursor. Conclusion: The preclinical studies on 3-DU indicate that it can enhance the pharmacological activity of both ribo- and deoxyribonucleoside analogues against neoplastic cells and viral infected cells. These observations suggest that 3-DU also has the potential to enhance the antiviral activity of molnupiravir and arrest the progression of the disease in patients with COVID-19.展开更多
Scientists have long been interested in the synthesis and medical use of 4’-thionudeosides. However, their effect on DNA synthesis has not been well studied. In order to study their bioactivity and explore new applic...Scientists have long been interested in the synthesis and medical use of 4’-thionudeosides. However, their effect on DNA synthesis has not been well studied. In order to study their bioactivity and explore new applications, we have synthesized 4’-thio-2’-deoxythymidine-5’-triphosphate (T’TP). The experimental results obtained in our lab showed that T’TP is a strong inhibitor of DNA polymerase, and the inhibition is highly specific. These prbperties indicate the potential of T’TP used for antitumor and antiviral agents as well as for the terminator in DNA sequencing.展开更多
Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the sa...Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the same triphosphate group and structurally planar bases as ATP. It is known that metal-organic frameworks (MOFs) are a new type of sensing material. In this work, highly selective recognition of ATP against other nucleosides triphosphate is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2]n (BDC2- = 1,4-benzenedicarboxylate). [Zn(BDC)(H2O)2]n dispersed in water shows a remarkable redshift of the emission wavelength upon addition of ATP, while cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and guanosine 5'-triphosphate (GTP), as well as some inorganic anions such as P2074- or PO43- can't induce such spectral change as ATP. 1H NMR, 31p NMR and Raman spectra indicate that both π-π stacking interactions and the coordination of Zn(II) with adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2],, with ATP. In addition, the experimental results showed that the redshift extent of the emission wavelength of [Zn(BDC)(HzO)2]n has the linear relation- ship with the concentration of ATP in the range of 0.3-1.8 mmol/L. Based on this, the detection of ATP content in the sample of ATP injection was made with satisfactory results. This system pioneers the application of MOFs in the recognition of nucle- otides, and testifies that the participation of base in the recognition process can improve the selectivity against the other nucleotides.展开更多
基金National Natural Science Foundation of China(81373383).
文摘OBJECTIVE There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism.We previously found that acute morphine treatment significantly increased uridine release in the dorsal striatum of mice,while the mechanism involved in morphine-induced uridine release and the role of uridine in morphine-induced neurobehavioral changes have not been understood.METHODS Uridine release in the dorsal striatum of mice was assessed by in vivo microdialysis coupled with high performance liquid chromatography(HPLC) after morphine treatment.Western blotting and immunofluorescence were used to evaluate the expression of uridine-related proteins.Morphine-induced neurobehavioral changes were assessed by locomotor activity,behavioral sensitization and conditioned place preference(CPP)test.The expression of NT5E,an extracellular enzyme involved in formation of nucleosides,including uridine,was specifically knocked down in the dorsal striatum of mice using adeno-associated virus(AAV)-mediated short hairpin RNA(shRNA).RESULTS Both acute and chronic morphine administration significantly increased uridine release in the dorsal striatum,and this was associated with upregulation of NT5E but not other uridine-related proteins.Inhibition of NT5E with APCP or shRNA markedly inhibited morphine-induced uridine release in the dorsal striatum and related neurobehavioral changes,including hyperlocomotor activity,behavioral sensitization and CPP.CONCLUSION The present study increases our understanding of the contribution of NT5E in regulating morphine-induced neurobehavioral changes,at least as related to uridine,and suggests that NT5E may be a novel therapeutic target to manage morphine abuse.
文摘Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.
基金the National Natural Science Foundation of China, No.30670694 the Natural Science Foundation of Anhui Province Department of Education in China, No.2006KJ361B+2 种基金 the National Science Fund for Distinguished Young Scholars of Anhui Medical University, No.GJJQ-0801 the Scientific Research Foundation for Doctor of Anhui Medical University, No. XJ2005006the Special Foundation for Young Scientists in Higher Education Institutions of Anhui Province, No.2010SQRL078
文摘BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in the P2R-mediated calcium signaling pathway in nociceptive trigemJnal ganglion neurons. DESIGN, TIME AND SETTING: In vitro experiments were conducted at the Patch-Clamp Laboratory of Comprehensive Experiment Center of Anhui Medical University, China from September 2008 to June 2009. MATERIALS: Thapsigargin, caffeine, suramin, and adenosine 5'-triphosphate were purchased from Sigma, USA. METHODS: Using Fura-2-based microfluorimetry, intracellular calcium concentration ([Ca^2+]i) was measured in freshly isolated adult rat small trigeminal ganglion neurons before and after drug application. MAIN OUTCOME MEASURES: Fluorescent intensities were expressed as the ratio F340/F380 to observe [Ca^2+]i changes. RESULTS: In normal extracellular solution and Ca^2+-free solution, application of thapsigargin (1 μmol/L), a sarcoplasmic reticulum Ca^2+ pump adenosine 5'-triphosphate inhibitor, as well as caffeine (20 mmol/L), a ryanodine receptor agonist, triggered [Ca^2+]i increase in small trigeminal ganglion neurons. A similar response was induced by application of adenosine 5'-triphosphate (100 μmol/L). In Ca^2+-free conditions, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were inhibited in cells pre-treated with thapsigargin (P 〈 0.01), but not by caffeine (P 〉 0.05). In normal, extracellular solution, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were partly inhibited in cells pre-treated with thapsigargin (P 〈 0.05). CONCLUSION: Inositol-1,4, 5-triphosphate (IP3)- and ryanodine-sensitive Ca^2+ stores exist in rat nociceptive trigeminal ganglion neurons. Two pathways are involved in the purinoreceptor-mediated [Ca^2+]i rise observed in nociceptive trigeminal ganglion neurons. One pathway involves the metabotropic P2Y receptors, which are associated with the IP3 sensitive Ca^2+store, and the second pathway is coupled to ionotropic P2X receptors that induce the Ca^2+ influx.
文摘An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.
基金Supported by"Production,Education&Research"item of Shanghai Baoshan(08-H-4)
文摘Recombinant Escherichia coli pUDP,which overexpressed uridine phosphorylase(UPase),was constructed.0.5 mmol·L 1lactose had a similar induction effect as the commonly used inducer IPTG during 2.5-5.5 h of cell growth.The lactose-induced UPase was stable at 50°C.Wet cells of pUDP was used as catalyst to biosynthesize 5-fluorouridine from 30 mmol·L 1uridine and 5-fluorouracil in phosphate buffer(pH 7.0)catalyzed at 50°C for 1.5 h and the yield of 5-fluorouridine was higher than 68%.Under the optimum reaction conditions for production of 5-fluorouridine,5-methyluridine and azauridine were synthesized from uridine by pUDP,the yield was 61.7%and 47.2%respectively.Deoxynucleosides were also synthesized by pUDP,but the yield was only about 20%.
文摘Background: Molnupiravir, N4-hydroxycytidine-5’-isopropyl ester, is an oral prodrug of N4-deoxycytidine (NHC), a nucleoside analog, which has in vitro activity against SARS-CoV-2. NHC is phosphorylated in cells to NHC triphosphate (NHC-TP), which is incorporated into viral RNA, leading to epigenetic catastrophe of the viral genome and inhibition of viral replication. The antiviral activity against SARS-CoV-2 is dependent on the number of molecules of NHC-TP incorporated into viral RNA. Clinical studies in patients with COVID-19 showed that treatment with molnupiravir for 5 days decreases the risk of hospitalization and death as compared with placebo. Objective: It should be possible to enhance the antiviral activity of NHC-TP against SARS-CoV-2 by the use of the biochemical modulator, 3-deazauridine (3DU). 3DU is an inhibitor of CTP synthetase. Inhibition of this enzyme results in a reduction in the intracellular pool size of CTP. Since NHC-TP competes with CTP for incorporation into viral RNA in the reaction catalyzed by the SARS-CoV-2 viral RNA-dependent RNA polymerase, the reduction in the level of CTP should result in a significant enhancement of the incorporation of NHC-TP into viral RNA and an enhancement of its antiviral activity. Methods: Analysis of the publications of 3DU and cytosine nucleoside analogues support the hypothesis that 3DU enhances the pharmacological action of the analogues. Results: 3-DU increased the incorporation of 5-azacytidine into RNA and 5-aza-deoxycytidine into DNA of leukemic cells with an enhancement of their antineoplastic action. 3-DU potentiated the antiviral activity against HIV-1 activity by the cytosine nucleoside analogues: 2’-deoxy-3’-thiacytidine (3TC;lamivudine) and 2’,3’-dideoxycytidine (ddC). This anti-HIV-1 activity of 3DU was associated with a reduction in the intracellular pool size of dCTP and increased incorporation of triphosphates of 3TC and ddC into DNA by the HIV-1 reverse transcriptase. The reduction of CTP levels in cells by 3-DU also leads to a reduction in dCTP since CTP is its precursor. Conclusion: The preclinical studies on 3-DU indicate that it can enhance the pharmacological activity of both ribo- and deoxyribonucleoside analogues against neoplastic cells and viral infected cells. These observations suggest that 3-DU also has the potential to enhance the antiviral activity of molnupiravir and arrest the progression of the disease in patients with COVID-19.
文摘目的研究新化合物4-硫-5-(2-噻吩基)尿嘧啶核苷酸在近紫外UVA辅助下,体外抑制人黑色素瘤A375细胞增殖的作用机制。方法利用MTT法筛选4-硫-5-(2-噻吩基)尿苷和近紫外UVA的协同作用剂量;采用Annexin V-FITC/PI形态学染色法和流式细胞术对协同作用引起的细胞死亡类型做以定性判断;通过蛋白免疫印迹法,探讨协同作用在细胞内的信号传递途径。结果无毒剂量的4-硫-5-(2-噻吩基)尿苷(100μmol·L^(-1))在无害剂量的UVA(15 k J·m-2)辅助下,通过降低p38蛋白和Akt蛋白的表达及磷酸化,下调Bcl-2、pro-caspase-9和pro-caspase-3蛋白的表达量,促进Bad蛋白表达及claved-PARP蛋白的活化,诱导细胞凋亡抑制人黑色素瘤A375细胞增殖。结论 4-硫-5-(2-噻吩基)尿苷在近紫外UVA的辅助下,通过诱导细胞凋亡,抑制人黑色素瘤A375细胞增殖。
文摘Scientists have long been interested in the synthesis and medical use of 4’-thionudeosides. However, their effect on DNA synthesis has not been well studied. In order to study their bioactivity and explore new applications, we have synthesized 4’-thio-2’-deoxythymidine-5’-triphosphate (T’TP). The experimental results obtained in our lab showed that T’TP is a strong inhibitor of DNA polymerase, and the inhibition is highly specific. These prbperties indicate the potential of T’TP used for antitumor and antiviral agents as well as for the terminator in DNA sequencing.
基金the National Natural Science Foundation of China(21175109)for the financial support
文摘Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the same triphosphate group and structurally planar bases as ATP. It is known that metal-organic frameworks (MOFs) are a new type of sensing material. In this work, highly selective recognition of ATP against other nucleosides triphosphate is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2]n (BDC2- = 1,4-benzenedicarboxylate). [Zn(BDC)(H2O)2]n dispersed in water shows a remarkable redshift of the emission wavelength upon addition of ATP, while cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and guanosine 5'-triphosphate (GTP), as well as some inorganic anions such as P2074- or PO43- can't induce such spectral change as ATP. 1H NMR, 31p NMR and Raman spectra indicate that both π-π stacking interactions and the coordination of Zn(II) with adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2],, with ATP. In addition, the experimental results showed that the redshift extent of the emission wavelength of [Zn(BDC)(HzO)2]n has the linear relation- ship with the concentration of ATP in the range of 0.3-1.8 mmol/L. Based on this, the detection of ATP content in the sample of ATP injection was made with satisfactory results. This system pioneers the application of MOFs in the recognition of nucle- otides, and testifies that the participation of base in the recognition process can improve the selectivity against the other nucleotides.