Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Amon...Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.展开更多
Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i...Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.展开更多
文摘Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.
基金supported by Jiangsu Province Biomass Energy and Materials Laboratory,China(Grant No.JSBEM-S-202007).
文摘Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields.