Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since ...Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.展开更多
To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep...To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep delithiation and high temperature conditions.The ion conductive coating layer of Li_(3)PO_(4) has been directly modified on the surface of LiCoO_(2) particles using magnetron sputtering method,significantly improving the lithium storage performance of LiCoO_(2)@Li_(3)PO_(4) composites.Compared to pure LiCoO_(2),the modified LiCoO_(2) sample exhibits obviously better cycle life and high-temperature performance.Especially,under the conditions of 2 and 1 C,the LiCoO_(2)@Li_(3)PO_(4) electrode delivers excellent cycling performance at high voltage of 4.5 V,with capacity retention rates of 89.7%and 75.7%at room temperature and high temperature of 45℃,being far greater than those of 12.3%and 29.1%for bare LiCoO_(2) electrodes.It is discovered that the Li_(3)PO_(4) coating layer not only effectively enhances interface compatibility and suppresses the irreversible phase transition of LiCoO_(2),but also further improves the Li^(+)transport kinetics and significantly reduces battery polarization,ultimately enabling the modified LiCoO_(2) electrode to exhibit excellent lithium storage performance and thermal safety characteristics under high voltage conditions.Thus,such effective modified strategy can undoubtedly provide an important academic inspiration for LiCoO_(2) implication.展开更多
Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured ...Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.展开更多
High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its ra...High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials.展开更多
The overcharge behaviors of 1000 m Ah LiCoO_(2)/graphite pouch cells are systematically investigated through the analysis of morphology,structural and thermal stability of LiCoO_(2) under different state of charge(SOC...The overcharge behaviors of 1000 m Ah LiCoO_(2)/graphite pouch cells are systematically investigated through the analysis of morphology,structural and thermal stability of LiCoO_(2) under different state of charge(SOC)of 120%,150%,174%,190%and 220%.The LiCoO_(2) experiences the phase transition from O3 to H1-3 and then O1 together with the grain breakage and boundary slip as evidenced by XRD and SEM analysis respectively,which results in the pronounced Co dissolution after the SOC of 174%.The impedance analysis of the pouch cells and coin cells demonstrates that the main contribution of impedance increase originates from the LiCoO_(2) electrode.Under the combined effect of structural collapse,Co dissolution,and electrolyte oxidization,the thermal stability of Li CoO_(2) cathode materials reduces with the progressing of overcharge as revealed by differential scanning calorimetry(DSC)results.We hope that this comprehensive understanding can provide meaningful guidance for advancing the overcharge performance of LiCoO_(2)/graphite pouch cells.展开更多
LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical applica...LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.展开更多
Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behavio...Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behaviors of LiCoO2 were investigated by charge-discharge cycling properties in the voltage range of 3.004.35 V((vs Li).) The results show that the prepared LiCoO2 powders calcinated at 900 ℃ for 120 min exhibit an initial charge and discharge capacity of 168 and 162 mA·h·g-1 at 0.1C current rate, respectively, as compared to 159 and 154 (mA·h·g-1) of LiCoO2 synthesized by conventional means. In addition, more than 95% of the capacity is retained (even) after 10 cycles. But with the increase of calcinating time, its electrochemical properties deteriorate. Compared with the conventional method, the microwave heating method is simple, fast, and with high energy efficiency.展开更多
Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of ca...Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.展开更多
Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)...Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)-II could not fully convert back to the pristine O_(3) -I phase while oxygen vacancies quickly generate and accumulate during the cycling.Our study paves the way for better understanding the doping effects of different elements on LiCoO_(2) in the future.展开更多
Development of advanced high-voltage electrolytes is key to achieving high-energy-density lithium metal batteries(LMBs).Weakly solvating electrolytes(WSE)can produce unique anion-driven interphasial chemistry via alte...Development of advanced high-voltage electrolytes is key to achieving high-energy-density lithium metal batteries(LMBs).Weakly solvating electrolytes(WSE)can produce unique anion-driven interphasial chemistry via altering the solvating power of the solvent,but it is difficult to dissolve the majority of Li salts and fail to cycle at a cut-off voltage above 4.5 V.Herein,we present a new-type WSE that is regulated by the anion rather than the solvent,and the first realize stable cycling of dimethoxyethane(DME)at 4.6 V without the use of the“solvent-in-salt”strategy.The relationships between the degree of dissociation of salts,the solvation structure of electrolytes,and the electrochemical performance of LMBs were systematically investigated.We found that LiBF_(4),which has the lowest degree of dissociation,can construct an anion-rich inner solvation shell,resulting in anion-derived anode/cathode interphases.Thanks to such unusual solvation structure and interphasial chemistry,the Li-LiCoO_(2)full cell with LiBF_(4)-based WSE could deliver excellent rate performance(115 mAh g^(-1)at 10 C)and outstanding cycling stability even under practical conditions,including high loading(10.7 mg cm^(-2)),thin Li(50μm),and limited electrolyte(1.2μL mg^(-1)).展开更多
基金the Hong Kong Polytechnic University(Q-CDBG),the Science and Technology Program of Guangdong Province of China(2020A0505090001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU152178/20E)+2 种基金the National Natural Science Foundation of China(22379052)the Natural Science Foundation of Guangdong(No.2022A1515011667)China Postdoctoral Science Foundation(2021T140268).
文摘Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
基金jointly supported by the Natural Science Foundations of China(No.22179020,12174057)Fujian Province’s“Young Eagle Program”Youth Top Talents Program。
文摘To meet the demand for high-performance LiCoO_(2) batteries,it is necessary to overcome challenges such as interface degradation and rapid capacity degradation caused by changes in bulk structure,especially under deep delithiation and high temperature conditions.The ion conductive coating layer of Li_(3)PO_(4) has been directly modified on the surface of LiCoO_(2) particles using magnetron sputtering method,significantly improving the lithium storage performance of LiCoO_(2)@Li_(3)PO_(4) composites.Compared to pure LiCoO_(2),the modified LiCoO_(2) sample exhibits obviously better cycle life and high-temperature performance.Especially,under the conditions of 2 and 1 C,the LiCoO_(2)@Li_(3)PO_(4) electrode delivers excellent cycling performance at high voltage of 4.5 V,with capacity retention rates of 89.7%and 75.7%at room temperature and high temperature of 45℃,being far greater than those of 12.3%and 29.1%for bare LiCoO_(2) electrodes.It is discovered that the Li_(3)PO_(4) coating layer not only effectively enhances interface compatibility and suppresses the irreversible phase transition of LiCoO_(2),but also further improves the Li^(+)transport kinetics and significantly reduces battery polarization,ultimately enabling the modified LiCoO_(2) electrode to exhibit excellent lithium storage performance and thermal safety characteristics under high voltage conditions.Thus,such effective modified strategy can undoubtedly provide an important academic inspiration for LiCoO_(2) implication.
基金the National Natural Science Foundation of China(12174015)the Natural Science Foundation of Beijing,China(2212003)+1 种基金the China National Petroleum Corporation Innovation Found(2021DQ02-1004)the National Natural Science Foundation of China(12102053)。
文摘Constructing robust surface and bulk structure is the prerequisite for realizing high performance high voltage LiCoO_(2)(LCO).Herein,we manage to synthesize a surface Mg-doping and bulk Al-doping coreshell structured LCO,which demonstrates excellent cycling performance.Half-cell shows 94.2%capacity retention after 100 cycles at 3.0-4.6 V(vs.Li/Li^(+))cycling,and no capacity decay after 300 cycles for fullcell test(3.0-4.55 V).Based on comprehensive microanalysis and theoretical calculations,the degradation mechanisms and doping effects are systematically revealed.For the undoped LCO,high voltage cycling induces severe interfacial and bulk degradations,where cracks,stripe defects,fatigue H2 phase,and spinel phase are identified in grain bulk.For the doped LCO,Mg-doped surface shell can suppress the interfacial degradations,which not only stabilizes the surface structure by forming a thin rock-salt layer but also significantly improves the electronic conductivity,thus enabling superior rate performance.Bulk Al-doping can suppress the lattice"breathing"effect and the detrimental H3 to H1-3 phase transition,which minimizes the internal strain and defects growth,maintaining the layered structure after prolonged cycling.Combining theoretical calculations,this work deepens our understanding of the doping effects of Mg and Al,which is valuable in guiding the future material design of high voltage LCO.
基金supported by the National Key R&D Program of China(2020YFA0406203)the Shenzhen Science and Technology Innovation Commission(JCYJ20180507181806316,JCYJ20200109105618137)+1 种基金the ECS Scheme(City U 21307019,City U7020043,City U7005500,City U7005612)the Shenzhen Research Institute,City University of Hong Kong。
文摘High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials.
基金supported by the National Natural Science Foundation of China(51974370)the Program of Huxiang Young Talents(2019RS2002)the Innovation and Entrepreneurship Project of Hunan Province,China(Grant No.2018GK5026)。
文摘The overcharge behaviors of 1000 m Ah LiCoO_(2)/graphite pouch cells are systematically investigated through the analysis of morphology,structural and thermal stability of LiCoO_(2) under different state of charge(SOC)of 120%,150%,174%,190%and 220%.The LiCoO_(2) experiences the phase transition from O3 to H1-3 and then O1 together with the grain breakage and boundary slip as evidenced by XRD and SEM analysis respectively,which results in the pronounced Co dissolution after the SOC of 174%.The impedance analysis of the pouch cells and coin cells demonstrates that the main contribution of impedance increase originates from the LiCoO_(2) electrode.Under the combined effect of structural collapse,Co dissolution,and electrolyte oxidization,the thermal stability of Li CoO_(2) cathode materials reduces with the progressing of overcharge as revealed by differential scanning calorimetry(DSC)results.We hope that this comprehensive understanding can provide meaningful guidance for advancing the overcharge performance of LiCoO_(2)/graphite pouch cells.
基金supported by the National Natural Science Foundation of China (52102249, 52172201, 51732005, 51902118)the China Postdoctoral Science Foundation (2019M662609 and 2020T130217)+1 种基金the international postdoctoral exchange fellowship program (PC2021026)the Major Technological Innovation Project of Hubei Province (2019AAA019) for financial support。
文摘LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.
文摘Microwave synthesis method was applied to the fast preparation of LiCoO2. The structure of the synthesized oxides was analyzed by using X-ray diffraction. Only single-phase LiCoO2 was obtained. Electrochemical behaviors of LiCoO2 were investigated by charge-discharge cycling properties in the voltage range of 3.004.35 V((vs Li).) The results show that the prepared LiCoO2 powders calcinated at 900 ℃ for 120 min exhibit an initial charge and discharge capacity of 168 and 162 mA·h·g-1 at 0.1C current rate, respectively, as compared to 159 and 154 (mA·h·g-1) of LiCoO2 synthesized by conventional means. In addition, more than 95% of the capacity is retained (even) after 10 cycles. But with the increase of calcinating time, its electrochemical properties deteriorate. Compared with the conventional method, the microwave heating method is simple, fast, and with high energy efficiency.
基金financially supported by the National Natural Science Foundation of China (52102323, 51972298)the China Postdoctoral Science Foundation (2021M703055)+1 种基金the National Key R&D Program of China (2021YFB4001401)the Key Research Program of the Chinese Academy of Sciences (ZDRWCN-2021-3-1)。
文摘Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.
基金the National Natural Science Foundation of China(Nos.21872055,22172049,21874045)Shanghai Science and technology innovation action plan(No.19142202900)+1 种基金BASF,Fundamental Research Funds for Central Universities and Open Foundation of ECNU(42125102)ECNU multifunctional platform for innovation(EPR).
文摘Dual-mode electron paramagnetic resonance(EPR)spectroscopy was employed to analyze redox mechanisms in lithium cobalt oxide LiCoO_(2)(LCO)cathode material during delithiation and lithiation.It was found that the O_(3)-II could not fully convert back to the pristine O_(3) -I phase while oxygen vacancies quickly generate and accumulate during the cycling.Our study paves the way for better understanding the doping effects of different elements on LiCoO_(2) in the future.
基金supported by the Key Program for International S&T Cooperation Projects of China(No.2017YFE0124300)National Natural Science Foundation of China(Nos.51971002,52171205 and 52171197)+1 种基金Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0393)Anhui Provincial Natural Science Foundation for Excellent Youth Scholars(No.2108085Y16).
文摘Development of advanced high-voltage electrolytes is key to achieving high-energy-density lithium metal batteries(LMBs).Weakly solvating electrolytes(WSE)can produce unique anion-driven interphasial chemistry via altering the solvating power of the solvent,but it is difficult to dissolve the majority of Li salts and fail to cycle at a cut-off voltage above 4.5 V.Herein,we present a new-type WSE that is regulated by the anion rather than the solvent,and the first realize stable cycling of dimethoxyethane(DME)at 4.6 V without the use of the“solvent-in-salt”strategy.The relationships between the degree of dissociation of salts,the solvation structure of electrolytes,and the electrochemical performance of LMBs were systematically investigated.We found that LiBF_(4),which has the lowest degree of dissociation,can construct an anion-rich inner solvation shell,resulting in anion-derived anode/cathode interphases.Thanks to such unusual solvation structure and interphasial chemistry,the Li-LiCoO_(2)full cell with LiBF_(4)-based WSE could deliver excellent rate performance(115 mAh g^(-1)at 10 C)and outstanding cycling stability even under practical conditions,including high loading(10.7 mg cm^(-2)),thin Li(50μm),and limited electrolyte(1.2μL mg^(-1)).