期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sockpuppet gang detection on social media sites 被引量:1
1
作者 Dong LIU QuanyuanWU +1 位作者 Weihong HAN Bin ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第1期124-135,共12页
Users of social media sites can use more than one account. These identities have pseudo anonymous properties, and as such some users abuse multiple accounts to perform undesirable actions, such as posting false or mis... Users of social media sites can use more than one account. These identities have pseudo anonymous properties, and as such some users abuse multiple accounts to perform undesirable actions, such as posting false or misleading re- marks comments that praise or defame the work of others. The detection of multiple user accounts that are controlled by an individual or organization is important. Herein, we define the problem as sockpuppet gang (SPG) detection. First, we analyze user sentiment orientation to topics based on emo- tional phrases extracted from their posted comments. Then we evaluate the similarity between sentiment orientations of user account pairs, and build a similar-orientation network (SON) where each vertex represents a user account on a so- cial media site. In an SON, an edge exists only if the two user accounts have similar sentiment orientations to most topics. The boundary between detected SPGs may be indistinct, thus by analyzing account posting behavior features we propose a multiple random walk method to iteratively remeasure the weight of each edge. Finally, we adopt multiple community detection algorithms to detect SPGs in the network. User ac- counts in the same SPG are considered to be controlled by the same individual or organization. In our experiments on real world datasets, our method shows better performance than other contemporary methods. 展开更多
关键词 social media site sockpuppet gang detection sentiment orientation user behavior feature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部