Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allo...Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.展开更多
The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are over...The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.展开更多
基金supported by National Natural Science Foundation of China under Grants No. 61371087 and 61531013The Research Fund of Ministry of Education-China Mobile (MCM20150102)
文摘Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801 and 61671251the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20150852+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05China Postdoctoral Science Foundation under Grant 2016M590481Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1501018Asupported by NSFC under Grants 61531011 and 61625106
文摘The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.