We developed a multinomial-logit-based stochastic user equilibrium(MNL SUE)model incorporating time value of cargo to investigate future proportions of cargo flow through the Northeast Passage(NEP)and the Suez Canal R...We developed a multinomial-logit-based stochastic user equilibrium(MNL SUE)model incorporating time value of cargo to investigate future proportions of cargo flow through the Northeast Passage(NEP)and the Suez Canal Route between representative ports.We studied navigation during the ice-free and ice-covered seasons using sea ice projections for 2070 based on 1991–2021 NEP ice data.Sailing distance and time between selected ports are lower via the NEP than the Suez Canal Route.Under the scenario of year-round operation of the NEP,the proportion of cargo flow through the NEP is estimated to be 68.5%,which represents considerable commercial potential.Proportions are higher for the ice-free season and for ports at high latitudes.We also assessed flow under different scenarios.Under the scenario of fuel price increase,proportion of flow through the NEP in the ice-covered season is expected to increase.If time value is ignored,flow through the NEP is expected to increase all year round.If shippers become more cost-conscious,flow through the NEP is also expected to increase.展开更多
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables...This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailab...The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.展开更多
The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms prov...The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.展开更多
The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic ...The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.展开更多
Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the over...Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.展开更多
Considering the range anxiety issue caused by the limited driving range and the scarcity of battery charging stations,the conventional multinomial logit(MNL)model with the overlapping path issue was used in route choi...Considering the range anxiety issue caused by the limited driving range and the scarcity of battery charging stations,the conventional multinomial logit(MNL)model with the overlapping path issue was used in route choice modeling to describe the route choice behavior of travelers effectively.Furthermore,the generalized nested logit-based stochastic user equilibrium(GNL-SUE)model with the constraints of multiple user classes and distance limits was proposed.A mathematical model was developed and solved by the method of successive averages.The mathematical model was proven to be analytically equivalent to the modified GNL-SUE model,and the uniqueness of the solution was also confirmed.The proposed mathematical model was tested and compared with the GNL-SUE model without a distance limit and the MNL-SUE model with a distance limit.Results show that the proposed mathematical model can effectively handle the range anxiety and overlapping path challenges.展开更多
The paper analyses integrating origin-destination (O-D) survey results with stochastic user equilibrium (SUE) in traffic assignment. The two methods are widely used in transportation planning but their applications ha...The paper analyses integrating origin-destination (O-D) survey results with stochastic user equilibrium (SUE) in traffic assignment. The two methods are widely used in transportation planning but their applications have not yet fully integrated. While O-D gives a generalized trip patterns, purpose and characteristics, SUE provides optimal trip distributions using the characteristics found in O-D survey. The paper utilized O-D and SUE in route relocation study for the town of Coamo in Puerto Rico. The O-D survey was used initially in studying possible trip distribution and assignment for the new route. Initial distribution and assignment of traffic to the existing roadway networks and the proposed route were allocated utilizing the O-D survey findings. The SUE was then used to optimize the assignments considering roadway characteristics such as number of lanes, capacity limits, free flow speed, signal spacing density, travel time and gasoline cost. The travel time was optimized through the Bureau of Public Roads (BPR) equation found in 2000 HCM. The optimal trips found from the SUE were then used to propose the final alignment of the new route. Traffic assignment from the SUE was slightly different from those initially assigned using O-D, indicating there was optimization. The assignment on new route was increased by 13.8% from the one assigned using O-D while assignment on the existing link was reduced by 22%.展开更多
Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper...Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper investigates the inefficiency upper bounds of this model against the deterministic system optimum and the C-logit stochastic system optimum in terms of the total network travel time.It is found that the commonality factor of overlapping routes significantly affects the inefficiency bound,besides link congestion degree,total demand and the number of feasible routes.If the commonality factor is not considered,the efficiency loss resulting from selfishly stochastic travel behavior will be to large extent underestimated.展开更多
Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail tran...Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail transit(URT) under network operation. In order to describe the congestion's impact to passengers' route choices, a generalized cost function with in-vehicle congestion was set up. Building on the k-th shortest path algorithm, a method for generating choice set with time constraint was embedded, considering the characteristics of network operation. A simple but efficient route choice model, which was derived from travel surveys for URT passengers in China, was introduced to perform the stochastic network loading at each iteration in the algorithm. Initial tests on the URT network in Shanghai City show that the methodology, with rational calculation time, promises to compute more precisely the passenger flow distribution of URT under network operation, compared with those practical algorithms used in today's China.展开更多
Considering characteristics of Chinese urban mixed traffic,the author develops a combinatorial model involving the mixed deterministic traffic volume distribution and user's equilibrium (UE) assignment on the basi...Considering characteristics of Chinese urban mixed traffic,the author develops a combinatorial model involving the mixed deterministic traffic volume distribution and user's equilibrium (UE) assignment on the basis of symmetrical link travel time function (or deterrence).Its uniqueness and equivalance to the Wardropian principle of UE are also proved.Finally,we give the algorithm of model.展开更多
Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recu...Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.展开更多
Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex...Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.展开更多
在一个配电网和城市交通网耦合框架中,提出一种电动汽车充电定价方法。建立以社会总成本最小为目标的电动汽车充电服务费的双层优化模型,模型上层为在含风电的配电网中求解充电服务费(Charging Service Fees, CSF)的二阶锥问题;下层为...在一个配电网和城市交通网耦合框架中,提出一种电动汽车充电定价方法。建立以社会总成本最小为目标的电动汽车充电服务费的双层优化模型,模型上层为在含风电的配电网中求解充电服务费(Charging Service Fees, CSF)的二阶锥问题;下层为一个遵循用户均衡(User Equilibrium, UE)原则的交通分配问题。该模型考虑了风电输出和OD交通流的不确定性,建立基于深度强化学习的求解框架,对随机双层问题进行解耦和近似求解。以5节点系统和某城市交通-电力耦合网为例,验证了该模型的有效性。展开更多
基金supported by the Ministry of Education of People’s Republic of China(Grant no.20JHQ016)the National Social Science Fund of China(Grant no.17BGJ059)。
文摘We developed a multinomial-logit-based stochastic user equilibrium(MNL SUE)model incorporating time value of cargo to investigate future proportions of cargo flow through the Northeast Passage(NEP)and the Suez Canal Route between representative ports.We studied navigation during the ice-free and ice-covered seasons using sea ice projections for 2070 based on 1991–2021 NEP ice data.Sailing distance and time between selected ports are lower via the NEP than the Suez Canal Route.Under the scenario of year-round operation of the NEP,the proportion of cargo flow through the NEP is estimated to be 68.5%,which represents considerable commercial potential.Proportions are higher for the ice-free season and for ports at high latitudes.We also assessed flow under different scenarios.Under the scenario of fuel price increase,proportion of flow through the NEP in the ice-covered season is expected to increase.If time value is ignored,flow through the NEP is expected to increase all year round.If shippers become more cost-conscious,flow through the NEP is also expected to increase.
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_110)the Young Scientists Fund of National Natural Science Foundation of China(No.51408253)the Young Scientists Fund of Huaiyin Institute of Technology(No.491713328)
文摘This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102,7121001)supported by the National Natural Science Foundation of China
文摘The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.
基金Projects(71601015,71501013,71471014)supported by the National Natural Science Foundation of ChinaProject(2015JBM060)supported by the Fundamental Research Funds for the Central Universities,China
文摘The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102)supported by the National Science Foundation of ChinaProject(2015JBM053)supported by the Fundamental Research Funds for the Central Universities,China
文摘The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.
基金Project(KYLX16_0271)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.
基金The Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYLX16_0271).
文摘Considering the range anxiety issue caused by the limited driving range and the scarcity of battery charging stations,the conventional multinomial logit(MNL)model with the overlapping path issue was used in route choice modeling to describe the route choice behavior of travelers effectively.Furthermore,the generalized nested logit-based stochastic user equilibrium(GNL-SUE)model with the constraints of multiple user classes and distance limits was proposed.A mathematical model was developed and solved by the method of successive averages.The mathematical model was proven to be analytically equivalent to the modified GNL-SUE model,and the uniqueness of the solution was also confirmed.The proposed mathematical model was tested and compared with the GNL-SUE model without a distance limit and the MNL-SUE model with a distance limit.Results show that the proposed mathematical model can effectively handle the range anxiety and overlapping path challenges.
文摘The paper analyses integrating origin-destination (O-D) survey results with stochastic user equilibrium (SUE) in traffic assignment. The two methods are widely used in transportation planning but their applications have not yet fully integrated. While O-D gives a generalized trip patterns, purpose and characteristics, SUE provides optimal trip distributions using the characteristics found in O-D survey. The paper utilized O-D and SUE in route relocation study for the town of Coamo in Puerto Rico. The O-D survey was used initially in studying possible trip distribution and assignment for the new route. Initial distribution and assignment of traffic to the existing roadway networks and the proposed route were allocated utilizing the O-D survey findings. The SUE was then used to optimize the assignments considering roadway characteristics such as number of lanes, capacity limits, free flow speed, signal spacing density, travel time and gasoline cost. The travel time was optimized through the Bureau of Public Roads (BPR) equation found in 2000 HCM. The optimal trips found from the SUE were then used to propose the final alignment of the new route. Traffic assignment from the SUE was slightly different from those initially assigned using O-D, indicating there was optimization. The assignment on new route was increased by 13.8% from the one assigned using O-D while assignment on the existing link was reduced by 22%.
基金supported by the National Basic Research Program of China under Grant No.2012CB725401the National Natural Science Foundation of China under Grant Nos.71271001 and 71401083the Program for New Century Excellent Talents in University under Grant No.NCET-13-0025
文摘Compared with standard logit-based stochastic user equilibrium assignment model,the C-logit model describes route choice behavior in a more realistic way by considering the overlapping effect between routes.This paper investigates the inefficiency upper bounds of this model against the deterministic system optimum and the C-logit stochastic system optimum in terms of the total network travel time.It is found that the commonality factor of overlapping routes significantly affects the inefficiency bound,besides link congestion degree,total demand and the number of feasible routes.If the commonality factor is not considered,the efficiency loss resulting from selfishly stochastic travel behavior will be to large extent underestimated.
基金Project(2007AA11Z236) supported by the National High Technology Research and Development Program of ChinaProject(2012M5209O1) supported by China Postdoctoral Science Foundation
文摘Based on the framework of method of successive averages(MSA), a modified stochastic user-equilibrium assignment algorithm was proposed, which can be used to calculate the passenger flow distribution of urban rail transit(URT) under network operation. In order to describe the congestion's impact to passengers' route choices, a generalized cost function with in-vehicle congestion was set up. Building on the k-th shortest path algorithm, a method for generating choice set with time constraint was embedded, considering the characteristics of network operation. A simple but efficient route choice model, which was derived from travel surveys for URT passengers in China, was introduced to perform the stochastic network loading at each iteration in the algorithm. Initial tests on the URT network in Shanghai City show that the methodology, with rational calculation time, promises to compute more precisely the passenger flow distribution of URT under network operation, compared with those practical algorithms used in today's China.
文摘Considering characteristics of Chinese urban mixed traffic,the author develops a combinatorial model involving the mixed deterministic traffic volume distribution and user's equilibrium (UE) assignment on the basis of symmetrical link travel time function (or deterrence).Its uniqueness and equivalance to the Wardropian principle of UE are also proved.Finally,we give the algorithm of model.
文摘Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations.
基金Project(2012CB725403-5)supported by National Basic Research Program of ChinaProject(71131001-2)supported by National Natural Science Foundation of China+1 种基金Projects(2012JBZ005)supported by Fundamental Research Funds for the Central Universities,ChinaProject(201170)supported by the Foundation for National Excellent Doctoral Dissertation of China
文摘Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.