Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementat...Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.展开更多
At present, how to enable Search Engine to construct user personal interest model initially, master user's personalized information timely and provide personalized services accurately have become the hotspot in the r...At present, how to enable Search Engine to construct user personal interest model initially, master user's personalized information timely and provide personalized services accurately have become the hotspot in the research of Search Engine area. Aiming at the problems of user model's construction and combining techniques of manual customization modeling and automatic analytical modeling, a User Interest Model (UIM) is proposed in the paper. On the basis of it, the corresponding establishment and update algorithms of User lnterest Profile (UIP) are presented subsequently. Simulation tests proved that the UIM proposed and corresponding algorithms could enhance the retrieval precision effectively and have superior adaptability.展开更多
We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user inter...We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuurn. In some sense, specific interests correspond to shortterm interests, while general interests correspond to longterm interests. So this representation more really reflects the users' interests. The algorithm can automatically model a us er's multiple interest domains, dynamically generate the in terest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.展开更多
Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the pres...Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the present algorithm’s advantages and disadvantages we propose a new concept: support-interest. Its key insight is that visitor will backtrack if they do not find the information where they expect. And the point from where they backtrack is the expected location for the page. We present User Access Matrix and the corresponding algorithm for discovering such expected locations that can handle page caching by the browser. Since the URL-URL matrix is a sparse matrix which can be represented by List of 3-tuples, we can mine user preferred sub-paths from the computation of this matrix. Accordingly, all the sub-paths are merged, and user preferred paths are formed. Experiments showed that it was accurate and scalable. It’s suitable for website based application, such as to optimize website’s topological structure or to design personalized services. Key words Web Mining - user preferred path - Web-log - support-interest - personalized services CLC number TP 391 Foundation item: Supported by the National High Technology Development (863 program of China) (2001AA113182)Biography: ZHOU Hong-fang (1976-), female.Ph. D candidate, research direction: data mining and knowledge discovery in databases.展开更多
兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签...兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签到序列的时空关系矩阵,使用多头注意力机制从中提取非连续签到和非相邻位置中的时空相关性,缓解签到数据稀疏所带来的困难。其次,在模型中设置用户短期偏好和长期偏好提取模块,自适应的将二者结合在一起,考虑了用户偏好对用户决策影响。最后,在Foursquare数据集上进行测试,并与其它模型结果进行对比,证实了提出的LSAN模型结果最优。研究表明LSAN模型能够获得最佳的推荐效果,为POI推荐提供新思路。展开更多
为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographica...为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。展开更多
文摘Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.
基金Supported by the National Natural Science Foundation of China (50674086)the Doctoral Foundation of Ministry of Education of China (20060290508)the Youth Scientific Research Foundation of CUMT (0D060125)
文摘At present, how to enable Search Engine to construct user personal interest model initially, master user's personalized information timely and provide personalized services accurately have become the hotspot in the research of Search Engine area. Aiming at the problems of user model's construction and combining techniques of manual customization modeling and automatic analytical modeling, a User Interest Model (UIM) is proposed in the paper. On the basis of it, the corresponding establishment and update algorithms of User lnterest Profile (UIP) are presented subsequently. Simulation tests proved that the UIM proposed and corresponding algorithms could enhance the retrieval precision effectively and have superior adaptability.
基金Supported by the National Natural Science Funda-tion of China (69973012 ,60273080)
文摘We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuurn. In some sense, specific interests correspond to shortterm interests, while general interests correspond to longterm interests. So this representation more really reflects the users' interests. The algorithm can automatically model a us er's multiple interest domains, dynamically generate the in terest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.
文摘Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the present algorithm’s advantages and disadvantages we propose a new concept: support-interest. Its key insight is that visitor will backtrack if they do not find the information where they expect. And the point from where they backtrack is the expected location for the page. We present User Access Matrix and the corresponding algorithm for discovering such expected locations that can handle page caching by the browser. Since the URL-URL matrix is a sparse matrix which can be represented by List of 3-tuples, we can mine user preferred sub-paths from the computation of this matrix. Accordingly, all the sub-paths are merged, and user preferred paths are formed. Experiments showed that it was accurate and scalable. It’s suitable for website based application, such as to optimize website’s topological structure or to design personalized services. Key words Web Mining - user preferred path - Web-log - support-interest - personalized services CLC number TP 391 Foundation item: Supported by the National High Technology Development (863 program of China) (2001AA113182)Biography: ZHOU Hong-fang (1976-), female.Ph. D candidate, research direction: data mining and knowledge discovery in databases.
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-based Social Networks,LBSNs)研究中最重要的任务之一。为了解决POI推荐中的空间稀疏性问题,提出一种用于位置推荐的长短期偏好时空注意力网络(LSAN)。首先,构建了签到序列的时空关系矩阵,使用多头注意力机制从中提取非连续签到和非相邻位置中的时空相关性,缓解签到数据稀疏所带来的困难。其次,在模型中设置用户短期偏好和长期偏好提取模块,自适应的将二者结合在一起,考虑了用户偏好对用户决策影响。最后,在Foursquare数据集上进行测试,并与其它模型结果进行对比,证实了提出的LSAN模型结果最优。研究表明LSAN模型能够获得最佳的推荐效果,为POI推荐提供新思路。
文摘为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。