In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best conn...In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.展开更多
Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allo...Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.展开更多
基金supported by the National Natural Science Fund of China(Grant NO.61771065,Grant NO.61571054 and Grant NO.61631005)Beijing Nova Program(NO.Z151100000315077)
文摘In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.
基金supported by National Natural Science Foundation of China under Grants No. 61371087 and 61531013The Research Fund of Ministry of Education-China Mobile (MCM20150102)
文摘Cache-enabled small cell networks have been regarded as a promising approach for network operators to cope with the explosive data traffic growth in future 5 G networks. However, the user association and resource allocation mechanism has not been thoroughly studied under given content placement situation. In this paper, we formulate the joint optimization problem of user association and resource allocation as a mixed integer nonlinear programming(MINLP) problem aiming at deriving a balance between the total utility of data rates and the total data rates retrieved from caches. To solve this problem, we propose a distributed relaxing-rounding method. Simulation results demonstrate that the distributed relaxing-rounding method outperforms traditional max-SINR method and range-expansion method in terms of both total utility of data rates and total data rates retrieved from caches in practical scenarios. In addition, effects of storage and backhaul capacities on the performance are also studied.