期刊文献+
共找到32,098篇文章
< 1 2 250 >
每页显示 20 50 100
Channel Correlation Based User Grouping Algorithm for Nonlinear Precoding Satellite Communication System 被引量:1
1
作者 Ke Wang Baorui Feng +5 位作者 Jingui Zhao Wenliang Lin Zhongliang Deng Dongdong Wang Yi Cen Genan Wu 《China Communications》 SCIE CSCD 2024年第1期200-214,共15页
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ... Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works. 展开更多
关键词 channel correlation inter-beam interference multibeam satellite Tomlinson-Harashima precoding user grouping
下载PDF
Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps 被引量:1
2
作者 Wael M.S.Yafooz Abdullah Alsaeedi 《Computers, Materials & Continua》 SCIE EI 2024年第4期735-759,共25页
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo... In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user comments.However, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models. 展开更多
关键词 Mobile apps issues play store user comments deep learning LSTM bidirectional LSTM
下载PDF
AMachine Learning Approach to User Profiling for Data Annotation of Online Behavior
3
作者 Moona Kanwal Najeed AKhan Aftab A.Khan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2419-2440,共22页
The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interest... The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater. 展开更多
关键词 user intent CLUSTER user profile online search information sharing user behavior search reasons
下载PDF
Rare-earth Magnet Free Flux-switching Generator for Wind Turbines in Micro-grids:A Review
4
作者 Tugberk Ozmen BatıEren Ergun +1 位作者 Mehmet Onur Gulbahce Nevzat Onat 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期295-309,共15页
In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy so... In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators. 展开更多
关键词 FLUX-SWITCHING GENERATOR micro-grid Wind energy
下载PDF
Hepatitis B Surface Antigen and Hepatitis C Virus Antibodies among Drug Users in Burkina Faso
5
作者 Sylvie Zida Kadari Cissé +13 位作者 Odette Ky-Zerbo Dinanibè Kambiré Serge Théophile Soubeiga Simon Tiendrebéogo Fatou Sissoko Issa Sory Célestine Ki-Toé Solange Dioma Djeneba Zorom Adama Ouédraogo Cedric Dimitri Axon Hien Mahamoudou Sanou Seni Kouanda Henri Gautier Ouédraogo 《Advances in Microbiology》 CAS 2024年第1期92-104,共13页
Introduction: The epidemiology of both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections among drug users (DUs) is little known in West Africa. The study aimed to assess the prevalence of hepatitis B and ... Introduction: The epidemiology of both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections among drug users (DUs) is little known in West Africa. The study aimed to assess the prevalence of hepatitis B and C viruses among drug users in Burkina Faso. Methodology: This was a cross-sectional biological and behavioral survey conducted between June and August 2022, among drug users in Ouagadougou and Bobo Dioulasso, the two main cities of Burkina Faso. A respondent-driven sampling (RDS) was used to recruit drug users. Hepatitis B surface antigen was determined using lateral flow rapid test kits and antibodies to hepatitis C virus in serum determined using an Enzyme-Linked Immunosorbent Assay. Data were entered and analyzed using Stata 17 software. Weighted binary logistic regression was used to identify the associated factors of hepatitis B and C infections and a p-value Results: A total of 323 drug users were recruited with 97.5% males. The mean age was 32.7 years old. The inhaled or smoked mode was the most used by drug users. The adjusted hepatitis B and hepatitis C prevalence among study participants were 11.1% and 2.3% respectively. The marital status (p = 0.001), and the nationality (p = 0.011) were significantly associated with hepatitis B infection. The type of drug used was not significantly associated with hepatitis B infection or hepatitis C infection. Conclusion: The prevalence of HBsAg and anti-HCV antibodies among DUs are comparable to those reported in the general population in Burkina Faso. This result suggests that the main routes of contamination by HBV and HCV among DUs are similar to those in the population, and could be explained by the low use of the injectable route by DUs in Burkina Faso. 展开更多
关键词 Drug users Hepatitis C Hepatitis B PREVALENCE Burkina Faso
下载PDF
User Profile & Attitude Analysis Based on Unstructured Social Media and Online Activity
6
作者 Yuting Tan Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第6期463-473,共11页
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ... As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis. 展开更多
关键词 Social Media user Behavior Analysis Sentiment Analysis Data Mining Machine Learning user Profiling CYBERSECURITY Behavioral Insights Personality Prediction
下载PDF
Learning Dual-Layer User Representation for Enhanced Item Recommendation
7
作者 Fuxi Zhu Jin Xie Mohammed Alshahrani 《Computers, Materials & Continua》 SCIE EI 2024年第7期949-971,共23页
User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated... User representation learning is crucial for capturing different user preferences,but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data,and thus cannot be measured directly.Text-based data models can learn user representations by mining latent semantics,which is beneficial to enhancing the semantic function of user representations.However,these technologies only extract common features in historical records and cannot represent changes in user intentions.However,sequential feature can express the user’s interests and intentions that change time by time.But the sequential recommendation results based on the user representation of the item lack the interpretability of preference factors.To address these issues,we propose in this paper a novel model with Dual-Layer User Representation,named DLUR,where the user’s intention is learned based on two different layer representations.Specifically,the latent semantic layer adds an interactive layer based on Transformer to extract keywords and key sentences in the text and serve as a basis for interpretation.The sequence layer uses the Transformer model to encode the user’s preference intention to clarify changes in the user’s intention.Therefore,this dual-layer user mode is more comprehensive than a single text mode or sequence mode and can effectually improve the performance of recommendations.Our extensive experiments on five benchmark datasets demonstrate DLUR’s performance over state-of-the-art recommendation models.In addition,DLUR’s ability to explain recommendation results is also demonstrated through some specific cases. 展开更多
关键词 user representation latent semantic sequential feature INTERPRETABILITY
下载PDF
User Preference Aware Hierarchical Edge-User Cooperative Caching Strategy
8
作者 Wu Dapeng Yang Lin +2 位作者 Cui Yaping He Peng Wang Ruyan 《China Communications》 SCIE CSCD 2024年第6期69-86,共18页
The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been conside... The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies. 展开更多
关键词 cooperative caching network delay timevarying popularity user preference
下载PDF
Deep Learning Social Network Access Control Model Based on User Preferences
9
作者 Fangfang Shan Fuyang Li +3 位作者 Zhenyu Wang Peiyu Ji Mengyi Wang Huifang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1029-1044,共16页
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw... A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model. 展开更多
关键词 Graph neural networks user preferences access control social network
下载PDF
Integrating Neighborhood Geographic Distribution and Social Structure Influence for Social Media User Geolocation
10
作者 Meng Zhang Xiangyang Luo Ningbo Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2513-2532,共20页
Geolocating social media users aims to discover the real geographical locations of users from their publicly available data,which can support online location-based applications such as disaster alerts and local conten... Geolocating social media users aims to discover the real geographical locations of users from their publicly available data,which can support online location-based applications such as disaster alerts and local content recommen-dations.Social relationship-based methods represent a classical approach for geolocating social media.However,geographically proximate relationships are sparse and challenging to discern within social networks,thereby affecting the accuracy of user geolocation.To address this challenge,we propose user geolocation methods that integrate neighborhood geographical distribution and social structure influence(NGSI)to improve geolocation accuracy.Firstly,we propose a method for evaluating the homophily of locations based on the k-order neighbor-hood geographic distribution(k-NGD)similarity among users.There are notable differences in the distribution of k-NGD similarity between location-proximate and non-location-proximate users.Exploiting this distinction,we filter out non-location-proximate social relationships to enhance location homophily in the social network.To better utilize the location-proximate relationships in social networks,we propose a graph neural network algorithm based on the social structure influence.The algorithm enables us to perform a weighted aggregation of the information of users’multi-hop neighborhood,thereby mitigating the over-smoothing problem of user features and improving user geolocation performance.Experimental results on real social media dataset demonstrate that the neighborhood geographical distribution similarity metric can effectively filter out non-location-proximate social relationships.Moreover,compared with 7 existing social relationship-based user positioning methods,our proposed method can achieve multi-granularity user geolocation and improve the accuracy by 4.84%to 13.28%. 展开更多
关键词 user geolocation social media neighborhood geographic distribution structure influence
下载PDF
Research on Collaborative Filtering Recommendation Algorithm Based on Improved User Portraits
11
作者 HOU Meng WANG Guo-peng +2 位作者 SONG Li-zhe WANG Hao-yue SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期117-123,134,共8页
With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filt... With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filtering recommendation algorithm was proposed based on improved user profiles in this study.Firstly,a profile labeling system was constructed based on user characteristics.This study proposed that user profile labels should be created using basic user information and basic item information,in order to construct multidimensional user profiles.TF-IDF algorithm was used to determine the weights of user-item feature labels.Secondly,user similarity was calculated by weighting both profile-based collaborative filtering and user-based collaborative filtering algorithms,and the final user similarity was obtained by harmonizing these weights.Finally,personalized recommendations were generated using Top-N method.Validation with the MovieLens-1M dataset revealed that this algorithm enhances both recommendation Precision and Recall compared to single-method approaches(recommendation algorithm based on user portrait and user-based collaborative filtering algorithm). 展开更多
关键词 Collaborative filtering user profiling Recommender system SIMILARITY
下载PDF
Distributed Economic MPC for Synergetic Regulation of the Voltage of an Island DC Micro-Grid
12
作者 Yi Zheng Yanye Wang +2 位作者 Xun Meng Shaoyuan Li Hao Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期734-745,共12页
In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag... In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC. 展开更多
关键词 Distributed model predictive control(DMPC) Lyapunovbased model predictive control micro-grid(MG) voltage control
下载PDF
Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation
13
作者 Jiaqi Gao Kangfeng Zheng +2 位作者 Xiujuan Wang Chunhua Wu Bin Wu 《Computers, Materials & Continua》 SCIE EI 2024年第10期251-270,共20页
User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore ... User identity linkage(UIL)refers to identifying user accounts belonging to the same identity across different social media platforms.Most of the current research is based on text analysis,which fails to fully explore the rich image resources generated by users,and the existing attempts touch on the multimodal domain,but still face the challenge of semantic differences between text and images.Given this,we investigate the UIL task across different social media platforms based on multimodal user-generated contents(UGCs).We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation(EUIL)approach.The method first generates captions for user-posted images with the BLIP model,alleviating the problem of missing textual information.Subsequently,we extract aligned text and image features with the CLIP model,which closely aligns the two modalities and significantly reduces the semantic gap.Accordingly,we construct a set of adapter modules to integrate the multimodal features.Furthermore,we design a temporal weight assignment mechanism to incorporate the temporal dimension of user behavior.We evaluate the proposed scheme on the real-world social dataset TWIN,and the results show that our method reaches 86.39%accuracy,which demonstrates the excellence in handling multimodal data,and provides strong algorithmic support for UIL. 展开更多
关键词 user identity linkage multimodal models attention mechanism temporal correlation
下载PDF
How to implement a knowledge graph completeness assessment with the guidance of user requirements
14
作者 ZHANG Ying XIAO Gang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期679-688,共10页
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge grap... In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs. 展开更多
关键词 knowledge graph completeness assessment relative completeness user requirement quality management
下载PDF
Joint Optimization of Resource Allocation and Trajectory Based on User Trajectory for UAV-Assisted Backscatter Communication System
15
作者 Peizhong Xie Junjie Jiang +1 位作者 Ting Li Yin Lu 《China Communications》 SCIE CSCD 2024年第2期197-209,共13页
The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca... The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme. 展开更多
关键词 energy efficiency joint optimization UAV-assisted backscatter communication user trajectory
下载PDF
Resource Allocation in Multi-User Cellular Networks:A Transformer-Based Deep Reinforcement Learning Approach
16
作者 Zhao Di Zheng Zhong +2 位作者 Qin Pengfei Qin Hao Song Bin 《China Communications》 SCIE CSCD 2024年第5期77-96,共20页
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin... To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance. 展开更多
关键词 dynamic resource allocation multi-user cellular network spectrum efficiency user fairness
下载PDF
Research on User Profile Construction Method Based on Improved TF-IDF Algorithm
17
作者 SHAO Ze-ming LI Yu-ang +4 位作者 YANG Ke WANG Guo-peng LIU Xing-guo CHEN Han-ning SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第6期110-116,共7页
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita... In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability. 展开更多
关键词 TF-IDF-K algorithm user profiling Equalization factor SVM
下载PDF
Joint User Association and Satellite Selection for Satellite-Terrestrial Integrated networks
18
作者 Qiu Wenjing Liu Aijun Han Chen 《China Communications》 SCIE CSCD 2024年第10期240-255,共16页
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ... In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul. 展开更多
关键词 dynamic backhaul links interference management satellite selection satellite-terrestrial integrated networks user association
下载PDF
Evaluation of an Autonomous Vehicle User Interface for Sensory Impaired Users
19
作者 Elena Angeleska Linda Lüchtrath Paolo Pretto 《Journal of Transportation Technologies》 2024年第4期570-589,共20页
Autonomous vehicles (AVs) hold immense promises in revolutionizing transportation, and their potential benefits extend to individuals with impairments, particularly those with vision and hearing impairments. However, ... Autonomous vehicles (AVs) hold immense promises in revolutionizing transportation, and their potential benefits extend to individuals with impairments, particularly those with vision and hearing impairments. However, the accommodation of these individuals in AVs requires developing advanced user interfaces. This paper describes an explorative study of a multimodal user interface for autonomous vehicles, specifically developed for passengers with sensory (vision and/or hearing) impairments. In a driving simulator, 32 volunteers with simulated sensory impairments, were exposed to multiple drives in an autonomous vehicle while freely interacting with standard and inclusive variants of the infotainment and navigation system interface. The two user interfaces differed in graphical layout and voice messages, which adopted inclusive design principles for the inclusive variant. Questionnaires and structured interviews were conducted to collect participants’ impressions. The data analysis reports positive user experiences, but also identifies technical challenges. Verified guidelines are provided for further development of inclusive user interface solutions. 展开更多
关键词 Autonomous Vehicles user Interface Inclusive Design Wizard of Oz Simulation
下载PDF
Reform of the Irrigation Sector and Creation of Functional and Sustainable Irrigation Water Users Associations (AUEI) in Niger: Capitalization of the Experience of the Konni AHA
20
作者 Saidou Abdoulkarimou Illou Mahamadou 《Agricultural Sciences》 2024年第2期209-229,共21页
During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to coo... During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI. 展开更多
关键词 Konni (Niger) Hydro-Agricultural Developments Association of Irrigation Water users GOVERNANCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部