We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
Based on the location of bromine substituents and conjugation matrix, a new substituent po- sition index ~X not only was defined, but also molecular shape indexes Km and electronega- tivity distance vectors Mm of diph...Based on the location of bromine substituents and conjugation matrix, a new substituent po- sition index ~X not only was defined, but also molecular shape indexes Km and electronega- tivity distance vectors Mm of diphenylamine and 209 kinds of polybrominated diphenylamine (PBDPA) molecules were calculated. Then the quantitative structure-property relationships (QSPR) among the thermodynamic properties of 210 organic pollutants and 0X, K3, M29, M36 were founded by Leaps-and-Bounds regression. Using the four structural parameters as input neurons of the artificial neural network, three satisfactory QSPR models with network structures of 4:21:1, 4:24:1, and 4:24:1 respectively, were achieved by the back-propagation algorithm. The total correlation coefficients R were 0.9999, 0.9997, and 0.9995 respectively and the standard errors S were 1.036, 1.469, and 1.510 respectively. The relative mean deviation between the predicted value and the experimental value of Sθ, AfHe and △fGθ- were 0.11%, 0.34% and 0.24% respectively, which indicated that the QSPR models had good stability and superior predictive ability. The results showed that there were good nonlinear correlations between the thermodynamic properties of PBDPAs and the four structural pa- rameters. Thus, it was concluded that the ANN models established by the new substituent position index were fully applicable to predict properties of PBDPAs.展开更多
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m...The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ...In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).展开更多
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the c...High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area.展开更多
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs...To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.展开更多
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t...Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.展开更多
Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electr...Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electrode was built upon the production data. The research leverages a back propagation algorithm as the neural network’s learning rule. The result indicates that there are positive correlations between the predicted results and the practical production data. Hence, using the neural network, predication of electrode property can be realized. For the first time, this research provides a more scientific method for designing electrode.展开更多
In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and...In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and 30 wt% of fly ash, at 0 vol.%, 0.5 vol.%, 1.0 vol.% and 1.5 vol.% of fiber, respectively. After being cured under the standard conditions for 7, 28, 90 and 365 d, the specimens of each mixture were tested to determine the corresponding compressive and flexural strengths. The pa- rameters such as the amounts of cement, fly ash replacement, sand, gravel, steel fiber, and the age of samples were selected as input variables, while the compressive and flexural strengths of the concrete were chosen as the output variables. The back propagation learning algorithm with three different variants, namely the Levenberg-Marquardt (LM), scaled conjugate gradient (SCG) and Fletcher-Powell conjugate gradient (CGF) algorithms were used in the network so that the best approach can be found. The results obtained from the model and the experiments were compared, and it was found that the suitable algorithm is the LM algorithm. Furthermore, the analysis of variance (ANOVA) method was used to determine how importantly the experimental parameters affect the strength of these mixtures.展开更多
We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb netwo...We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.展开更多
The flourishing complex network theory has aroused increasing interest in studying the properties of real-world networks. Based on the traffic network of Chang-Zhu Tan urban agglomeration in central China, some basic ...The flourishing complex network theory has aroused increasing interest in studying the properties of real-world networks. Based on the traffic network of Chang-Zhu Tan urban agglomeration in central China, some basic network topological characteristics were computed with data collected from local traffic maps, which showed that the traffic networks were small-world networks with strong resilience against failure; more importantly, the investigations of as- sortativity coefficient and average nearestlneighbour degree implied the disassortativity of the traffic networks. Since traffic network hierarchy as an important basic property has been neither studied intensively nor proved quantitatively, the authors are inspired to analyse traffic network hierarchy with disassortativity and to finely characterize hierarchy in the traffic networks by using the n-degree-n-clustering coefficient relationship. Through numerical results and analyses an exciting conclusion is drawn that the traffic networks exhibit a significant hierarchy, that is, the traffic networks are proved to be hierarchically organized. The result provides important information and theoretical groundwork for optimal transport planning.展开更多
Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The...Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The polymerization processes of IPNs were traced through infrared spectrum (IR) techniques, by which the phase separation in systems could be controlled effectively. Results for the morphology and miscibility among multiple phases of IPNs, obtained by transmission electron microscope (TEM) indicated that the domains between two phases were constricted in nanometer scales. The dynamic mechanical thermal analyzer (DMTA) detection results revealed that the loss factor (tanS) and loss modulus (E″) increased with the polyurethane amounts in system, and the peak value in curves of tanδ and E″ appeared toward low temperature ranges. Maximum tanδ values of all samples were above 0.3 in the nearly 50℃ ranges. Also, the mechanical properties of PU/UP IPNs were studied in detail.展开更多
Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, ...Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.展开更多
Artificial neural networks (ANN) were used to model the strength, ductility and hardness of multi-pass welds deposited by gas tungsten arc welding (GTAW) in plates of commercial titanium alloys. The input parameters o...Artificial neural networks (ANN) were used to model the strength, ductility and hardness of multi-pass welds deposited by gas tungsten arc welding (GTAW) in plates of commercial titanium alloys. The input parameters of the ANN are the alloy composition and heat treatment conditions and its output is one of the mechanical properties of the weld metal of titanium alloys, namely ultimate tensile strength (UTS), yield strength, elongation, reduction of the area (ROA) and hardness. The titanium alloys used in the work include commercially pure titanium, alpha or near-alpha titanium, alpha-beta titanium and beta or near-beta titanium.展开更多
The uniaxial compressive strength(UCS)of intact rock is one of the most important parameters required and determined for rock mechanics studies in engineering projects.The limitations and difficulty of conducting test...The uniaxial compressive strength(UCS)of intact rock is one of the most important parameters required and determined for rock mechanics studies in engineering projects.The limitations and difficulty of conducting tests on rocks,specifically on thinly bedded,highly fractured,highly porous and weak rocks,as well as the fact that these tests are destructive,expensive and time-consuming,lead to development of soft computing-based techniques.Application of artificial neural networks(ANNs)for predicting UCS has become an attractive alternative for geotechnical engineering scientists.In this study,an ANN was designed with the aim of indirectly predicting UCS through the serpentinization percentage,and physical,dynamic and mechanical characteristics of serpentinites.For this purpose,data obtained in earlier experimental work from central Greece were used.The ANN-based results were compared with the experimental ones and those obtained from previous analysis.The proposed ANN-based formula was found to be very efficient in predicting UCS values and the samples could be classified with simple physical,dynamic and mechanical tests,thus the expensive,difficult,time-consuming and destructive mechanical tests could be avoided.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘Based on the location of bromine substituents and conjugation matrix, a new substituent po- sition index ~X not only was defined, but also molecular shape indexes Km and electronega- tivity distance vectors Mm of diphenylamine and 209 kinds of polybrominated diphenylamine (PBDPA) molecules were calculated. Then the quantitative structure-property relationships (QSPR) among the thermodynamic properties of 210 organic pollutants and 0X, K3, M29, M36 were founded by Leaps-and-Bounds regression. Using the four structural parameters as input neurons of the artificial neural network, three satisfactory QSPR models with network structures of 4:21:1, 4:24:1, and 4:24:1 respectively, were achieved by the back-propagation algorithm. The total correlation coefficients R were 0.9999, 0.9997, and 0.9995 respectively and the standard errors S were 1.036, 1.469, and 1.510 respectively. The relative mean deviation between the predicted value and the experimental value of Sθ, AfHe and △fGθ- were 0.11%, 0.34% and 0.24% respectively, which indicated that the QSPR models had good stability and superior predictive ability. The results showed that there were good nonlinear correlations between the thermodynamic properties of PBDPAs and the four structural pa- rameters. Thus, it was concluded that the ANN models established by the new substituent position index were fully applicable to predict properties of PBDPAs.
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
基金supported by the National Natural Science Foundation of China(Grant No.52090081)the State Key Laboratory of Hydroscience and Engineering(Grant No.2022-KY-02).
文摘The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.
文摘In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
基金Project supported in part by the National Natural Science Foundation of China (No. 40201021) Zhejiang Provincial Natural Science Foundation of China (No. 402016).
文摘High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area.
基金College of Agriculture and Natural Resources,University of Tehran for financial support of the study(Grant No.7104017/6/24 and 28)
文摘To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.
基金supported by the National Natural Science Foundation of China (No.51273189)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016),the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046)
文摘Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.
文摘Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electrode was built upon the production data. The research leverages a back propagation algorithm as the neural network’s learning rule. The result indicates that there are positive correlations between the predicted results and the practical production data. Hence, using the neural network, predication of electrode property can be realized. For the first time, this research provides a more scientific method for designing electrode.
文摘In this study, an artificial neural network (ANN) model for studying the strength properties of steel fiber reinforced concrete (SFRC) containing fly ash was devised. The mixtures were prepared with 0 wt%, 15 wt%, and 30 wt% of fly ash, at 0 vol.%, 0.5 vol.%, 1.0 vol.% and 1.5 vol.% of fiber, respectively. After being cured under the standard conditions for 7, 28, 90 and 365 d, the specimens of each mixture were tested to determine the corresponding compressive and flexural strengths. The pa- rameters such as the amounts of cement, fly ash replacement, sand, gravel, steel fiber, and the age of samples were selected as input variables, while the compressive and flexural strengths of the concrete were chosen as the output variables. The back propagation learning algorithm with three different variants, namely the Levenberg-Marquardt (LM), scaled conjugate gradient (SCG) and Fletcher-Powell conjugate gradient (CGF) algorithms were used in the network so that the best approach can be found. The results obtained from the model and the experiments were compared, and it was found that the suitable algorithm is the LM algorithm. Furthermore, the analysis of variance (ANOVA) method was used to determine how importantly the experimental parameters affect the strength of these mixtures.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278).
文摘We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries,which contains multiple topological network models such as the regular cylindrical network,cobweb network,globe network,and so on.We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method(a recursion-transform method based on node potentials).To illustrate the multiplicity of the results we give a series of special cases.Interestingly,the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies,which indicates that our research work creates new research ideas and techniques.As a byproduct of the study,a new mathematical identity is discovered in the comparative study.
基金supported by the National Natural Science Foundation of China (Grant No. 60964006)the Scientific Research Innovation Fund Project for Graduate Student of Hunan,China (Grant No.3340-74236000003)the Open Program of State Key Laboratory of Rail Traffic Control and Safety (Beijing Jiaotong University),China (Grant No.2007K-0027)
文摘The flourishing complex network theory has aroused increasing interest in studying the properties of real-world networks. Based on the traffic network of Chang-Zhu Tan urban agglomeration in central China, some basic network topological characteristics were computed with data collected from local traffic maps, which showed that the traffic networks were small-world networks with strong resilience against failure; more importantly, the investigations of as- sortativity coefficient and average nearestlneighbour degree implied the disassortativity of the traffic networks. Since traffic network hierarchy as an important basic property has been neither studied intensively nor proved quantitatively, the authors are inspired to analyse traffic network hierarchy with disassortativity and to finely characterize hierarchy in the traffic networks by using the n-degree-n-clustering coefficient relationship. Through numerical results and analyses an exciting conclusion is drawn that the traffic networks exhibit a significant hierarchy, that is, the traffic networks are proved to be hierarchically organized. The result provides important information and theoretical groundwork for optimal transport planning.
基金supported by the Scientific Research Foundation of Harbin Institute of Technology(HIT.2002.56)the Postdoctoral Foundation of Heilongjiang Province,China
文摘Interpenetrating polymer networks (IPNs) composed of acrylate-modified polyurethane (PU)/unsaturated polyester (UP) resin via simultaneous polymerization with various component ratios of PU/UP were prepared. The polymerization processes of IPNs were traced through infrared spectrum (IR) techniques, by which the phase separation in systems could be controlled effectively. Results for the morphology and miscibility among multiple phases of IPNs, obtained by transmission electron microscope (TEM) indicated that the domains between two phases were constricted in nanometer scales. The dynamic mechanical thermal analyzer (DMTA) detection results revealed that the loss factor (tanS) and loss modulus (E″) increased with the polyurethane amounts in system, and the peak value in curves of tanδ and E″ appeared toward low temperature ranges. Maximum tanδ values of all samples were above 0.3 in the nearly 50℃ ranges. Also, the mechanical properties of PU/UP IPNs were studied in detail.
基金This work is supported by the Scientific Research Foun-dation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.
文摘Artificial neural networks (ANN) were used to model the strength, ductility and hardness of multi-pass welds deposited by gas tungsten arc welding (GTAW) in plates of commercial titanium alloys. The input parameters of the ANN are the alloy composition and heat treatment conditions and its output is one of the mechanical properties of the weld metal of titanium alloys, namely ultimate tensile strength (UTS), yield strength, elongation, reduction of the area (ROA) and hardness. The titanium alloys used in the work include commercially pure titanium, alpha or near-alpha titanium, alpha-beta titanium and beta or near-beta titanium.
文摘The uniaxial compressive strength(UCS)of intact rock is one of the most important parameters required and determined for rock mechanics studies in engineering projects.The limitations and difficulty of conducting tests on rocks,specifically on thinly bedded,highly fractured,highly porous and weak rocks,as well as the fact that these tests are destructive,expensive and time-consuming,lead to development of soft computing-based techniques.Application of artificial neural networks(ANNs)for predicting UCS has become an attractive alternative for geotechnical engineering scientists.In this study,an ANN was designed with the aim of indirectly predicting UCS through the serpentinization percentage,and physical,dynamic and mechanical characteristics of serpentinites.For this purpose,data obtained in earlier experimental work from central Greece were used.The ANN-based results were compared with the experimental ones and those obtained from previous analysis.The proposed ANN-based formula was found to be very efficient in predicting UCS values and the samples could be classified with simple physical,dynamic and mechanical tests,thus the expensive,difficult,time-consuming and destructive mechanical tests could be avoided.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.