Introduction: The epidemiology of both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections among drug users (DUs) is little known in West Africa. The study aimed to assess the prevalence of hepatitis B and ...Introduction: The epidemiology of both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections among drug users (DUs) is little known in West Africa. The study aimed to assess the prevalence of hepatitis B and C viruses among drug users in Burkina Faso. Methodology: This was a cross-sectional biological and behavioral survey conducted between June and August 2022, among drug users in Ouagadougou and Bobo Dioulasso, the two main cities of Burkina Faso. A respondent-driven sampling (RDS) was used to recruit drug users. Hepatitis B surface antigen was determined using lateral flow rapid test kits and antibodies to hepatitis C virus in serum determined using an Enzyme-Linked Immunosorbent Assay. Data were entered and analyzed using Stata 17 software. Weighted binary logistic regression was used to identify the associated factors of hepatitis B and C infections and a p-value Results: A total of 323 drug users were recruited with 97.5% males. The mean age was 32.7 years old. The inhaled or smoked mode was the most used by drug users. The adjusted hepatitis B and hepatitis C prevalence among study participants were 11.1% and 2.3% respectively. The marital status (p = 0.001), and the nationality (p = 0.011) were significantly associated with hepatitis B infection. The type of drug used was not significantly associated with hepatitis B infection or hepatitis C infection. Conclusion: The prevalence of HBsAg and anti-HCV antibodies among DUs are comparable to those reported in the general population in Burkina Faso. This result suggests that the main routes of contamination by HBV and HCV among DUs are similar to those in the population, and could be explained by the low use of the injectable route by DUs in Burkina Faso.展开更多
This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
Autonomous vehicles (AVs) hold immense promises in revolutionizing transportation, and their potential benefits extend to individuals with impairments, particularly those with vision and hearing impairments. However, ...Autonomous vehicles (AVs) hold immense promises in revolutionizing transportation, and their potential benefits extend to individuals with impairments, particularly those with vision and hearing impairments. However, the accommodation of these individuals in AVs requires developing advanced user interfaces. This paper describes an explorative study of a multimodal user interface for autonomous vehicles, specifically developed for passengers with sensory (vision and/or hearing) impairments. In a driving simulator, 32 volunteers with simulated sensory impairments, were exposed to multiple drives in an autonomous vehicle while freely interacting with standard and inclusive variants of the infotainment and navigation system interface. The two user interfaces differed in graphical layout and voice messages, which adopted inclusive design principles for the inclusive variant. Questionnaires and structured interviews were conducted to collect participants’ impressions. The data analysis reports positive user experiences, but also identifies technical challenges. Verified guidelines are provided for further development of inclusive user interface solutions.展开更多
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,...The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.展开更多
During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to coo...During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching l...With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching levels among different bases.Most clinical teaching bases have incomplete teaching management systems,inadequate teaching management institutions,insufficient teaching personnel,and inadequate implementation of teaching rules and regulations.This article combines the construction practice of three-level clinical teaching base of the General Medicine College and the First Affiliated Hospital of Xi’an Medical University.We establish a standardized management system for the three-level clinical teaching base;implement a teaching supervision system and strengthen the monitoring of teaching quality;adopt multiple evaluations to test the effectiveness of clinical teaching implementation;explore the path of homogenization construction of teaching bases in terms of unified teacher training,promoting the development of teacher teaching abilities with equal quality and excellence,and providing a reference for improving the quality of medical talent training.展开更多
This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can...This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.展开更多
In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously int...In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously interconnected world is not without its risks. Malicious URLs are a powerful menace, masquerading as legitimate links while holding the intent to hack computer systems or steal sensitive personal information. As the sophistication and frequency of cyberattacks increase, identifying bad URLs has emerged as a critical aspect of cybersecurity. This study presents a new approach that enables the average end-user to check URL safety using Microsoft Excel. Using the powerful VirusTotal API for URL inspections, this study creates an Excel add-in that integrates Python and Excel to deliver a seamless, user-friendly interface. Furthermore, the study improves Excel’s capabilities by allowing users to encrypt and decrypt text communications directly in the spreadsheet. Users may easily encrypt their conversations by simply typing a key and the required text into predefined cells, enhancing their personal cybersecurity with a layer of cryptographic secrecy. This strategy democratizes access to advanced cybersecurity solutions, making attentive digital integrity a feature rather than a daunting burden.展开更多
The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr...The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.展开更多
The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and diff...The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and differential scanning calorimeter (DSC) methods. The results show that severe dendritic segregation exists in the experimental alloy ingot. Numerous eutectic phases can be observed in the grain boundary, and the distribution of the main elements along the interdendritic region varies periodically. The main secondary phase is Al2Cu. The overburnt temperature of the alloy is 520 °C. The second phases are gradually dissolved into the matrix, and the grain boundaries become spare and thin during homogenization with increasing temperature or prolonging holding time. Homogenization can be described by a constitutive equation in exponential function. The suitable homogenization treatment for the alloy is (510 °C, 18 h), which agrees well with the results of homogenization kinetic analysis.展开更多
Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result sh...Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys.展开更多
The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the mi...The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.展开更多
Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy...Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.展开更多
The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning cal...The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning calorimetry (DSC), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. The results show that severe dendritic segregation exists in the as-cast ingot. There are many secondary phases, includingTB(Al7Cu4Li),θ(Al2Cu),R(Al5CuLi3) andS(Al2CuMg) phases, and a small amount of (Mg+Ag+Zn)-containing and AlCuFeMn phases. The fractions of intermetallic phases decrease sharply after 2 h of second-step homogenization. By prolonging the second-step homogenization time, theTB,θ,R,S and (Mg+Ag+Zn)-containing phases completely dissolve into the matrix. The dendritic segregation is eliminated, and the homogenization kinetics can be described by a constitutive equation in exponential function. However, it seems that the AlCuFeMn phase is separated into Al7Cu2Fe and AlCuMn phases, and the size of Al7Cu2Fe phase exhibits nearly no change when the second-step homogenization time is longer than 2 h.展开更多
The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogeniz...The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogenization conditions were studied.The results show that the grain morphology is large dendritic structure and the grain size increases obviously by the addition of 0.5% Er.Moreover,most of Er element in the alloy segregates at grain boundary during solidification,resulting in ternary Al8Cu4Er phase.After homogenization,most of the MgZn2 phase at grain boundary has dissolved back to Al matrix in the two alloys.In the Er-containing alloy,the dissolution temperature of Al8Cu4Er phase is about 575 °C.Therefore,the homogenization treatment cannot eliminate Al8Cu4Er phase validity.展开更多
The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by ho...The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by homogenization exhibited an enhancement in the tensile strength, yield strength, and elongation by 29%, 41%, and 11%, respectively, as compared with a sample processed by the conventional homogenization treatment. The stress-strain curve of the sample processed by the homogenization treatment exhibited the Portevin-Le Chatelier effect, whereas the sample processed by the cryogenic treatment did not. Further, the cryogenic treatment could accelerate the precipitation of secondary phase particles for the sample processed by a deep cryogenic treatment, followed by a homogenization treatment, which enhanced the dislocation pinning effect of the solvent atoms and thus improved the critical strain.展开更多
The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formati...The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.展开更多
The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray...The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.展开更多
文摘Introduction: The epidemiology of both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections among drug users (DUs) is little known in West Africa. The study aimed to assess the prevalence of hepatitis B and C viruses among drug users in Burkina Faso. Methodology: This was a cross-sectional biological and behavioral survey conducted between June and August 2022, among drug users in Ouagadougou and Bobo Dioulasso, the two main cities of Burkina Faso. A respondent-driven sampling (RDS) was used to recruit drug users. Hepatitis B surface antigen was determined using lateral flow rapid test kits and antibodies to hepatitis C virus in serum determined using an Enzyme-Linked Immunosorbent Assay. Data were entered and analyzed using Stata 17 software. Weighted binary logistic regression was used to identify the associated factors of hepatitis B and C infections and a p-value Results: A total of 323 drug users were recruited with 97.5% males. The mean age was 32.7 years old. The inhaled or smoked mode was the most used by drug users. The adjusted hepatitis B and hepatitis C prevalence among study participants were 11.1% and 2.3% respectively. The marital status (p = 0.001), and the nationality (p = 0.011) were significantly associated with hepatitis B infection. The type of drug used was not significantly associated with hepatitis B infection or hepatitis C infection. Conclusion: The prevalence of HBsAg and anti-HCV antibodies among DUs are comparable to those reported in the general population in Burkina Faso. This result suggests that the main routes of contamination by HBV and HCV among DUs are similar to those in the population, and could be explained by the low use of the injectable route by DUs in Burkina Faso.
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
文摘Autonomous vehicles (AVs) hold immense promises in revolutionizing transportation, and their potential benefits extend to individuals with impairments, particularly those with vision and hearing impairments. However, the accommodation of these individuals in AVs requires developing advanced user interfaces. This paper describes an explorative study of a multimodal user interface for autonomous vehicles, specifically developed for passengers with sensory (vision and/or hearing) impairments. In a driving simulator, 32 volunteers with simulated sensory impairments, were exposed to multiple drives in an autonomous vehicle while freely interacting with standard and inclusive variants of the infotainment and navigation system interface. The two user interfaces differed in graphical layout and voice messages, which adopted inclusive design principles for the inclusive variant. Questionnaires and structured interviews were conducted to collect participants’ impressions. The data analysis reports positive user experiences, but also identifies technical challenges. Verified guidelines are provided for further development of inclusive user interface solutions.
基金financially supported by State Grid Corporation of China (No.5500-202128250A-0-0-00)。
文摘The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.
文摘During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金2022 Education and Teaching Reform Research Project of Xi’an Medical University“Construction and Practice of the Teaching Quality Assurance System in the Three-Level Teaching Base of General Practice Medicine Under the Internet+Model”(Project number:2022JG-05)。
文摘With the continuous expansion of medical student enrollment,the number of clinical teaching bases is gradually increasing.However,there are significant differences in clinical teaching management models and teaching levels among different bases.Most clinical teaching bases have incomplete teaching management systems,inadequate teaching management institutions,insufficient teaching personnel,and inadequate implementation of teaching rules and regulations.This article combines the construction practice of three-level clinical teaching base of the General Medicine College and the First Affiliated Hospital of Xi’an Medical University.We establish a standardized management system for the three-level clinical teaching base;implement a teaching supervision system and strengthen the monitoring of teaching quality;adopt multiple evaluations to test the effectiveness of clinical teaching implementation;explore the path of homogenization construction of teaching bases in terms of unified teacher training,promoting the development of teacher teaching abilities with equal quality and excellence,and providing a reference for improving the quality of medical talent training.
文摘This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.
文摘In the digital age, the global character of the Internet has significantly improved our daily lives by providing access to large amounts of knowledge and allowing for seamless connections. However, this enormously interconnected world is not without its risks. Malicious URLs are a powerful menace, masquerading as legitimate links while holding the intent to hack computer systems or steal sensitive personal information. As the sophistication and frequency of cyberattacks increase, identifying bad URLs has emerged as a critical aspect of cybersecurity. This study presents a new approach that enables the average end-user to check URL safety using Microsoft Excel. Using the powerful VirusTotal API for URL inspections, this study creates an Excel add-in that integrates Python and Excel to deliver a seamless, user-friendly interface. Furthermore, the study improves Excel’s capabilities by allowing users to encrypt and decrypt text communications directly in the spreadsheet. Users may easily encrypt their conversations by simply typing a key and the required text into predefined cells, enhancing their personal cybersecurity with a layer of cryptographic secrecy. This strategy democratizes access to advanced cybersecurity solutions, making attentive digital integrity a feature rather than a daunting burden.
基金Project (2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.
文摘The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and differential scanning calorimeter (DSC) methods. The results show that severe dendritic segregation exists in the experimental alloy ingot. Numerous eutectic phases can be observed in the grain boundary, and the distribution of the main elements along the interdendritic region varies periodically. The main secondary phase is Al2Cu. The overburnt temperature of the alloy is 520 °C. The second phases are gradually dissolved into the matrix, and the grain boundaries become spare and thin during homogenization with increasing temperature or prolonging holding time. Homogenization can be described by a constitutive equation in exponential function. The suitable homogenization treatment for the alloy is (510 °C, 18 h), which agrees well with the results of homogenization kinetic analysis.
基金Project (08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology,China
文摘Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys.
基金Projects (50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject (20070420023) supported by the China Postdoctoral Science FoundationProject (2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.
基金Project (2012CB619501) supported by the National Basic Research Program of China
文摘Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.
基金Project(2013JSJJ0001)supported by Teachers’Research Found,ChinaProject(2013AA032401)supported by the National High Technology Research and Development Program of ChinaProject supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,China
文摘The microstructural evolution of a Mg, Ag and Zn micro-alloyed Al?3.8Cu?1.28Li (mass fraction, %) alloy ingot during two-step homogenization was examined in detail by optical microscopy (OM), differential scanning calorimetry (DSC), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. The results show that severe dendritic segregation exists in the as-cast ingot. There are many secondary phases, includingTB(Al7Cu4Li),θ(Al2Cu),R(Al5CuLi3) andS(Al2CuMg) phases, and a small amount of (Mg+Ag+Zn)-containing and AlCuFeMn phases. The fractions of intermetallic phases decrease sharply after 2 h of second-step homogenization. By prolonging the second-step homogenization time, theTB,θ,R,S and (Mg+Ag+Zn)-containing phases completely dissolve into the matrix. The dendritic segregation is eliminated, and the homogenization kinetics can be described by a constitutive equation in exponential function. However, it seems that the AlCuFeMn phase is separated into Al7Cu2Fe and AlCuMn phases, and the size of Al7Cu2Fe phase exhibits nearly no change when the second-step homogenization time is longer than 2 h.
基金Project(50875031) supported by the National Natural Science Foundation of ChinaProject(2005CB623705) supported by National Basic Research Program of China
文摘The billets of Al-Zn-Mg-Cu-Zr and Al-Zn-Mg-Cu-Zr-0.5Er alloys were prepared by semi-continuous direct chill casting (DCC).The effects of trace Er on microstructure of Al-Zn-Mg-Cu-Zr alloy under as-cast and homogenization conditions were studied.The results show that the grain morphology is large dendritic structure and the grain size increases obviously by the addition of 0.5% Er.Moreover,most of Er element in the alloy segregates at grain boundary during solidification,resulting in ternary Al8Cu4Er phase.After homogenization,most of the MgZn2 phase at grain boundary has dissolved back to Al matrix in the two alloys.In the Er-containing alloy,the dissolution temperature of Al8Cu4Er phase is about 575 °C.Therefore,the homogenization treatment cannot eliminate Al8Cu4Er phase validity.
基金Project(2011BAC10B02)supported by the National Key Technology R&D Program of China
文摘The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by homogenization exhibited an enhancement in the tensile strength, yield strength, and elongation by 29%, 41%, and 11%, respectively, as compared with a sample processed by the conventional homogenization treatment. The stress-strain curve of the sample processed by the homogenization treatment exhibited the Portevin-Le Chatelier effect, whereas the sample processed by the cryogenic treatment did not. Further, the cryogenic treatment could accelerate the precipitation of secondary phase particles for the sample processed by a deep cryogenic treatment, followed by a homogenization treatment, which enhanced the dislocation pinning effect of the solvent atoms and thus improved the critical strain.
基金Project (08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology,China
文摘The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.
基金Project (2012CB619503) supported by the National Basic Research Program of China
文摘The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.