The structure, fabrication and emission characteristics of a silicon cold micro-cathode using ultra-shallow PN+ junction are presented. Implantation of As+ with a energy around 12 kev, rapid thermal annealing combined...The structure, fabrication and emission characteristics of a silicon cold micro-cathode using ultra-shallow PN+ junction are presented. Implantation of As+ with a energy around 12 kev, rapid thermal annealing combined with argon sputtering are used for forming ultra-shallow pn+ junction, whose depth is lower than 30nm. In a vacuum system Ⅰ-Ⅴcharacteristics were measured. The stability problem which was found in the devices testing is also discussed in this paper.展开更多
WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, ...WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, resulting in local etching pattern. It is noted that theetching resolution of SECM is dominantly determined by the size of the microelectrode.However, many experimental results have shown the significant influence of the lateral diffu-sion of etchant on the etching resolution. Therefore, a thin diffusion layer of the展开更多
文摘The structure, fabrication and emission characteristics of a silicon cold micro-cathode using ultra-shallow PN+ junction are presented. Implantation of As+ with a energy around 12 kev, rapid thermal annealing combined with argon sputtering are used for forming ultra-shallow pn+ junction, whose depth is lower than 30nm. In a vacuum system Ⅰ-Ⅴcharacteristics were measured. The stability problem which was found in the devices testing is also discussed in this paper.
文摘WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, resulting in local etching pattern. It is noted that theetching resolution of SECM is dominantly determined by the size of the microelectrode.However, many experimental results have shown the significant influence of the lateral diffu-sion of etchant on the etching resolution. Therefore, a thin diffusion layer of the