期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
1
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
两宋史事易学的演变与发展特征
2
作者 续晓琼 《周易研究》 CSSCI 北大核心 2020年第1期46-52,共7页
援史释《易》成为宋儒解《易》的常用方式,虽然此种注《易》方式并不始于宋代,但大量用史在宋代易学阐释中表现的尤为突出。究其原因,当与宋代儒学复兴、史学发展以及宋代士人的政治观念有着密切的联系。北宋与南宋的史事易学又呈现出... 援史释《易》成为宋儒解《易》的常用方式,虽然此种注《易》方式并不始于宋代,但大量用史在宋代易学阐释中表现的尤为突出。究其原因,当与宋代儒学复兴、史学发展以及宋代士人的政治观念有着密切的联系。北宋与南宋的史事易学又呈现出明显的不同,北宋援引史事是出于解说义理的需要,而南宋则用史事解证卦爻辞,直接将《周易》视为一部极具历史借鉴及指导意义的经典。南宋卦卦有史的《周易》阐释并不是一朝一夕形成的,而是北宋援引史事以证易理的继承与发展。 展开更多
关键词 史事易学 义理易学 以史证理 以史证经 卦卦有史
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部