To research the hair-care efficacy of prinsepia utilis oil.We evaluated the haircare efficacies of prinsepia utilis oil through methods such as differential scanning calorimetry(DSC),measuring difficulty level and mec...To research the hair-care efficacy of prinsepia utilis oil.We evaluated the haircare efficacies of prinsepia utilis oil through methods such as differential scanning calorimetry(DSC),measuring difficulty level and mechanical resistance against combing of wet and dry hair,scanning electron microscopy(SEM).According to the analysis of differential scanning calorimetry(DSC),the testing sample has repairing effect on the hairα-keratin damage induced by heated blowing.According to the pictures of scanning electron microscopy(SEM),The test results indicate the repairing or resisting thermal damage effects induced by hair drier of prinsepia utilis oil.By comparison with the blank control group,the strength and work of dry comb and wet comb were significantly reduced in the samples tested with 2%prinsepia utilis oil concentration(P﹤0.05).This indicates the testing sample has the efficacy to improve the easiness of combing and anti-tangle.And friction work is significantly reduced This indicates the smoothing efficacy of the testing sample.and the hair scales status is better;this indicates hair scales repairing efficacy of testing sample.Conclusion:PRINSEPIA UTILIS OIL has the effect of repairing hair scales,resisting thermal damage caused by hair dryer,easy to comb,anti-tangle,smoothing.展开更多
Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of inter...Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.展开更多
Due to the expected rise in the world population,an increase in the requirements for quality and safety of food and feed is expected,which leads to the growing demand for new sources of sustainable and renewable prote...Due to the expected rise in the world population,an increase in the requirements for quality and safety of food and feed is expected,which leads to the growing demand for new sources of sustainable and renewable protein.Insect protein is gaining importance as a renewable material for several reasons,reflecting its potential contribu-tions to sustainability,resource efficiency,and environmental conservation.Some insect species are known to be able to efficiently convert organic waste into high-value products such as protein,requiring less land and water compared to traditional livestock.In addition,insect farming produces fewer greenhouse gas emissions,contri-buting to mitigating climate change.Insects are considered as a major potential alternative to animal or plant protein due to their many nutritional benefits,including high protein,mineral,and vitamin contents.On average,the protein content of insects ranges between 35%and 60%dry weight,which exceeds plant protein sources,such as cereal,soybeans,and lentils.As the acceptance of insect protein grows and technologies advance,the food and feed industries continue to explore and expand their applications,offering consumers diverse and sustainable pro-tein choices.In this review,we discuss the recentfindings relating to insect protein focusing on its characteristics,extraction methods,applications,and opportunities along with some trade-offs and uncertainties.展开更多
[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutri...[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutrient solutions for growing B. campestris by hydroponics, boric acid and manganese sulfate were added at 0.5, 2.5, and 7.5 mg/L respectively. Another treatment without boron and manganese was prepared as the control. Quality and physiological indices of B. campestris in the 10 treatments were measured. [Result] Boron and manganese shared obvious in-teraction in improving the quality and physiological indices of B. campestris. To cul-tivate B. campestris with high quality and strong resistance, the optimum concentra-tions of boron and manganese in the nutrient solution should be 2.5 mg/L boric acid and 2.5-7.5 mg/L manganese sulfate. [Conclusion] The findings wil provide refer-ence for studying effects of trace elements on nutrient composition of vegetables.展开更多
The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have broug...The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits.展开更多
A new hemiterpenoid, (+)-(2R,3S)-2-chloro-3-hydroxy-3-methyl-T-buty-rolactone was isolatexi from the leaves of Prinsepia utilis Royle. Its structure was clucidatexi by spectroscopic methods and X-ray crystallogra...A new hemiterpenoid, (+)-(2R,3S)-2-chloro-3-hydroxy-3-methyl-T-buty-rolactone was isolatexi from the leaves of Prinsepia utilis Royle. Its structure was clucidatexi by spectroscopic methods and X-ray crystallographic analysis.展开更多
Under the optimal condition of copper ions adsorption on yeast,we found some different effects among static adsorption, shaking adsorption and negative pressure cavitation adsorption, and the methods of yeast with dif...Under the optimal condition of copper ions adsorption on yeast,we found some different effects among static adsorption, shaking adsorption and negative pressure cavitation adsorption, and the methods of yeast with different pretreatments also affect adsorption of copper ions. At the same time, the change of intercellular pH before and after adsorption of copper with BCECF was studied. The copper distribution was located by using PhenGreen (dipotassium salt and diacetate), and the surface of yeast was observed by an atomic force microscope. The results showed that negative pressure cavitation can improve bioadsorption capacity of copper ions on yeast. However, the yeasts' pretreatment has a higher effect on bioadsorption. It indicates that heavy metal bioadsorption on yeast has much relation with its cellular molecule basis. With the adsorping, the intercellular pH of yeast increased gradually and changed from acidity to alkalescence. These results may suggest that negative pressure cavitation can compel heavy metals to transfer from the cell surface into inside cell and make the surface of yeast coarse.展开更多
文摘To research the hair-care efficacy of prinsepia utilis oil.We evaluated the haircare efficacies of prinsepia utilis oil through methods such as differential scanning calorimetry(DSC),measuring difficulty level and mechanical resistance against combing of wet and dry hair,scanning electron microscopy(SEM).According to the analysis of differential scanning calorimetry(DSC),the testing sample has repairing effect on the hairα-keratin damage induced by heated blowing.According to the pictures of scanning electron microscopy(SEM),The test results indicate the repairing or resisting thermal damage effects induced by hair drier of prinsepia utilis oil.By comparison with the blank control group,the strength and work of dry comb and wet comb were significantly reduced in the samples tested with 2%prinsepia utilis oil concentration(P﹤0.05).This indicates the testing sample has the efficacy to improve the easiness of combing and anti-tangle.And friction work is significantly reduced This indicates the smoothing efficacy of the testing sample.and the hair scales status is better;this indicates hair scales repairing efficacy of testing sample.Conclusion:PRINSEPIA UTILIS OIL has the effect of repairing hair scales,resisting thermal damage caused by hair dryer,easy to comb,anti-tangle,smoothing.
基金supported by National Natural Science Foundation of China (31972949)National Nonprofit Institute Research Grant of Chinese Academy of Forestry,China (CAFYBB2023MB006)。
文摘Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.
文摘Due to the expected rise in the world population,an increase in the requirements for quality and safety of food and feed is expected,which leads to the growing demand for new sources of sustainable and renewable protein.Insect protein is gaining importance as a renewable material for several reasons,reflecting its potential contribu-tions to sustainability,resource efficiency,and environmental conservation.Some insect species are known to be able to efficiently convert organic waste into high-value products such as protein,requiring less land and water compared to traditional livestock.In addition,insect farming produces fewer greenhouse gas emissions,contri-buting to mitigating climate change.Insects are considered as a major potential alternative to animal or plant protein due to their many nutritional benefits,including high protein,mineral,and vitamin contents.On average,the protein content of insects ranges between 35%and 60%dry weight,which exceeds plant protein sources,such as cereal,soybeans,and lentils.As the acceptance of insect protein grows and technologies advance,the food and feed industries continue to explore and expand their applications,offering consumers diverse and sustainable pro-tein choices.In this review,we discuss the recentfindings relating to insect protein focusing on its characteristics,extraction methods,applications,and opportunities along with some trade-offs and uncertainties.
基金Supported by a grant from Ministry of Science and Technology for the Project of Science and Technology Talents Serving in Enterprise(2009GJC50042)~~
文摘[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutrient solutions for growing B. campestris by hydroponics, boric acid and manganese sulfate were added at 0.5, 2.5, and 7.5 mg/L respectively. Another treatment without boron and manganese was prepared as the control. Quality and physiological indices of B. campestris in the 10 treatments were measured. [Result] Boron and manganese shared obvious in-teraction in improving the quality and physiological indices of B. campestris. To cul-tivate B. campestris with high quality and strong resistance, the optimum concentra-tions of boron and manganese in the nutrient solution should be 2.5 mg/L boric acid and 2.5-7.5 mg/L manganese sulfate. [Conclusion] The findings wil provide refer-ence for studying effects of trace elements on nutrient composition of vegetables.
基金financially supported by the National Key Research and Development Program of China(2019YFC1904302)Foundation of State Key Laboratory of High-efficiency Utilisation of Coal and Green Chemical Engineering(2021-K81)the Technology of Coal-to-liquids Research Institute of National Energy Group([2020]010)。
文摘The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits.
文摘A new hemiterpenoid, (+)-(2R,3S)-2-chloro-3-hydroxy-3-methyl-T-buty-rolactone was isolatexi from the leaves of Prinsepia utilis Royle. Its structure was clucidatexi by spectroscopic methods and X-ray crystallographic analysis.
基金The National Basic Research Program (973) of China (No. 2004CB418505)
文摘Under the optimal condition of copper ions adsorption on yeast,we found some different effects among static adsorption, shaking adsorption and negative pressure cavitation adsorption, and the methods of yeast with different pretreatments also affect adsorption of copper ions. At the same time, the change of intercellular pH before and after adsorption of copper with BCECF was studied. The copper distribution was located by using PhenGreen (dipotassium salt and diacetate), and the surface of yeast was observed by an atomic force microscope. The results showed that negative pressure cavitation can improve bioadsorption capacity of copper ions on yeast. However, the yeasts' pretreatment has a higher effect on bioadsorption. It indicates that heavy metal bioadsorption on yeast has much relation with its cellular molecule basis. With the adsorping, the intercellular pH of yeast increased gradually and changed from acidity to alkalescence. These results may suggest that negative pressure cavitation can compel heavy metals to transfer from the cell surface into inside cell and make the surface of yeast coarse.