Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform...Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.展开更多
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pa...Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns.展开更多
The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'a...The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource.展开更多
To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, d...To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, difficult tunnel support, complicated rock mechanics, and low mining recovery. An integrated technology package was built for safe, efficient, and continuous mining in a deep, massive, and complex nickel and cobalt mine. This was done by the invention of a large-area continuous mining method with honeycomb drives; the establishment of ground control theory and a technology package for high-stress and fragmented ore rock: and the development of a new type of backfilling cement material, along with a deep backfilling technology that comprises the pipeline transport of high-density slurry with coarse aggregates. In this way, good solutions to existing problems were found to permit the efficient exploitation and comprehensive utilization of the resources in the deep Jinchuan nickel mine. In addition, a technological demonstration in an underground mine was performed using the cemented undercut-and-fill mining method for stressful, frag- mented, and rheological rock.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073155,62002137,62106088,62206113)the High-End Foreign Expert Recruitment Plan(G2023144007L)the Fundamental Research Funds for the Central Universities(JUSRP221028).
文摘Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.
文摘Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns.
基金the sponsor by the National Natural Science Foundation of China (No. 50974115)the Program of Introducing Talents of Discipline to Universities (No.B07028)
文摘The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource.
文摘To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, difficult tunnel support, complicated rock mechanics, and low mining recovery. An integrated technology package was built for safe, efficient, and continuous mining in a deep, massive, and complex nickel and cobalt mine. This was done by the invention of a large-area continuous mining method with honeycomb drives; the establishment of ground control theory and a technology package for high-stress and fragmented ore rock: and the development of a new type of backfilling cement material, along with a deep backfilling technology that comprises the pipeline transport of high-density slurry with coarse aggregates. In this way, good solutions to existing problems were found to permit the efficient exploitation and comprehensive utilization of the resources in the deep Jinchuan nickel mine. In addition, a technological demonstration in an underground mine was performed using the cemented undercut-and-fill mining method for stressful, frag- mented, and rheological rock.