期刊文献+
共找到1,005篇文章
< 1 2 51 >
每页显示 20 50 100
Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi_(12)O_(17)Cl_(2)nanosheets with efficient and selective photoreduction of CO_(2)to CO 被引量:1
1
作者 Meili Guan Ni Lu +7 位作者 Xuan Zhang Qiuwan Wang Jian Bao Guiye Chen Hao Yu Huaming Li Jiexiang Xia Xuezhong Gong 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期1-11,共11页
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C... The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment. 展开更多
关键词 Bi cluster Bi_(12)O_(17)Cl_(2)nanosheet oxygen vacancy photocatalytic CO_(2)reduction
下载PDF
Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
2
作者 Jian-Zhuang Wu Ying Xi +2 位作者 Bo-Ya Li Lian-E Lu Yong-Hong Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期308-315,共8页
Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuse... Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication. 展开更多
关键词 quantum ENTANGLEMENT SILICON vacancy CENTERS DIAMOND waveguide
下载PDF
Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material
3
作者 Orynbay Zhanadilov Sourav Baiju +7 位作者 Natalia Voronina Jun Ho Yu A.-Yeon Kim Hun‑Gi Jung Kyuwook Ihm Olivier Guillon Payam Kaghazchi Seung‑Taek Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期340-358,共19页
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t... This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries. 展开更多
关键词 Layered oxide Oxygen evolution Sodium battery vacancy CATHODE
下载PDF
Unsaturated bi-heterometal clusters in metal-vacancy sites of 2D MoS2 for efficient hydrogen evolution
4
作者 Gonglei Shao Jie Xu +4 位作者 Shasha Gao Zhang Zhang Song Liu Xu Zhang Zhen Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期264-275,共12页
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu... The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials. 展开更多
关键词 CLUSTERS hydrogen evolution reaction metal vacancy MOS2 unsaturated heterometal
下载PDF
Effect of Vacancy Defects on the Properties of CoS_(2) and FeS_(2)
5
作者 冯中营 ZHANG Jianmin +3 位作者 WANG Xiaowei YANG Wenjin JING Yinlan YANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期627-638,共12页
In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat... In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices. 展开更多
关键词 cobalt disulfide iron disulfide vacancy defect fist principles
下载PDF
Effects of vacancy and external electric field on the electronic properties of the MoSi_(2)N_(4)/graphene heterostructure
6
作者 梁前 罗祥燕 +3 位作者 钱国林 王远帆 梁永超 谢泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期542-550,共9页
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele... Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures. 展开更多
关键词 MoSi_(2)N_(4) vacancy defects external electric field Schottky contacts
下载PDF
Theoretical study of kinetic isotope effects for vacancy diffusion of impurity in solids
7
作者 Yuxi Jing Xuefang Li Yun Liu 《Acta Geochimica》 EI CAS CSCD 2024年第5期959-970,共12页
Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accu... Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise. 展开更多
关键词 vacancy diffusion Diffusional isotope effect Statistical mechanics
下载PDF
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering 被引量:2
8
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations N-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction 被引量:1
9
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 Hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Boosting Hydrogen Storage Performance of MgH_(2) by Oxygen Vacancy-Rich H-V_(2)O_(5) Nanosheet as an Excited H-Pump 被引量:1
10
作者 Li Ren Yinghui Li +4 位作者 Zi Li Xi Lin Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期398-416,共19页
MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V... MgH_(2) is a promising high-capacity solid-state hydrogen storage material,while its application is greatly hindered by the high desorption temperature and sluggish kinetics.Herein,intertwined 2D oxygen vacancy-rich V_(2)O_(5) nanosheets(H-V_(2)O_(5))are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH_(2).The as-prepared MgH_(2)-H-V_(2)O_(5) composites exhibit low desorption temperatures(Tonset=185℃)with a hydrogen capacity of 6.54 wt%,fast kinetics(Ea=84.55±1.37 kJ mol^(-1) H_(2) for desorption),and long cycling stability.Impressively,hydrogen absorption can be achieved at a temperature as low as 30℃ with a capacity of 2.38 wt%within 60 min.Moreover,the composites maintain a capacity retention rate of~99%after 100 cycles at 275℃.Experimental studies and theoretical calculations demonstrate that the in-situ formed VH_(2)/V catalysts,unique 2D structure of H-V_(2)O_(5) nanosheets,and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties.Notably,the existence of oxygen vacancies plays a double role,which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH_(2),but also indirectly affect the activity of the catalytic phase VH_(2)/V,thereby further boosting the hydrogen storage performance of MgH_(2).This work highlights an oxygen vacancy excited“hydrogen pump”effect of VH_(2)/V on the hydrogen sorption of Mg/MgH_(2).The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems. 展开更多
关键词 Hydrogen storage MgH_(2) V_(2)O_(5)nanosheets Oxygen vacancies VH_(2)
下载PDF
Internal electric field modulation by copper vacancy concentration of cuprous sulfide nanosheets for enhanced selective CO_(2) photoreduction
11
作者 Xian Shi Weidong Dai +4 位作者 Xiaoqian Li Yang Bai Qin Ren Yao Lei Xing'an Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期324-330,共7页
Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch... Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion. 展开更多
关键词 Internal electric field intensity Cuprous sulfide photocatalysts Cu vacancies Charge separation Selective CO_(2) photoreduction
下载PDF
Vacancy engineering of oxidized Nb_(2)CTx MXenes for a biased nitrogen fixation 被引量:1
12
作者 Mengzhao Zhang Hanqing Yin +5 位作者 Fuhao Jin Jingquan Liu Xuqiang Ji Aijun Du Wenrong Yang Zhen Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1185-1194,共10页
The artificial nitrogen(N_(2)) reduction reaction(NRR) via electrocatalysis is a newly developed methodology to produce ammonia(NH3) at ambient conditions,but faces the challenges in N_(2)activation and poor reaction ... The artificial nitrogen(N_(2)) reduction reaction(NRR) via electrocatalysis is a newly developed methodology to produce ammonia(NH3) at ambient conditions,but faces the challenges in N_(2)activation and poor reaction selectivity.Herein,Nb-based MXenes are developed to remarkably enhance the NRR activity through the engineering of the stretched 3D structure and oxygen vacancies(VO).The theoretical studies indicate that N_(2)could be initially adsorbed on VOwith an end-on configuration,and the potential determining step might be the first hydrogenation step.The catalysts achieve an NH3production rate of 29.1 μg h^(-1)mg_(cat)^(-1)and excellent Faradic efficiency of 11.5%,surpassing other Nbbased catalysts.The selectivity of NRR is assigned to the unique structure of the catalysts,including(1) the layered graphitic structure for fast electron transfer and active site distribution,(2) the reactive VOfor N_(2)adsorption and activation,and(3) the expanded interlayer space for mass transfer. 展开更多
关键词 Nitrogen reduction reaction Nb-based MXenes Oxygen vacancy vacancy engineering ELECTROCATALYSIS
下载PDF
Oxygen vacancy defects engineering on Cu-doped Co_(3)O_(4) for promoting effective COS hydrolysis 被引量:3
13
作者 Guanyu Mu Yan Zeng +5 位作者 Yong Zheng Yanning Cao Fujian Liu Shijing Liang Yingying Zhan Lilong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期831-841,共11页
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of... The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process. 展开更多
关键词 Oxygen vacancy COS hydrolysis In situ spectra Cu doped Co_(3)O_(4)
下载PDF
Rationalizing the impact of oxygen vacancy on polysulfide conversion kinetics for highly efficient lithium-sulfur batteries 被引量:2
14
作者 Ya Song Huan Li +3 位作者 Junfeng Li Jinyu An Jiao-Jing Shao Guangmin Zhou 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期51-60,I0003,共11页
The“shuttle effect”of lithium polysulfides(LiPSs)is a huge challenge for practical use of high-energydensity lithium-sulfur(Li-S)batteries,and one of the main reasons is the sluggish kinetics of sulfur conversion.Me... The“shuttle effect”of lithium polysulfides(LiPSs)is a huge challenge for practical use of high-energydensity lithium-sulfur(Li-S)batteries,and one of the main reasons is the sluggish kinetics of sulfur conversion.Metal oxides are able to expedite the sulfur electrochemistry,and the structural defects enhance the adsorption-conversion ability of metal oxides for polysulfides.However,a significant research gap still remains regarding the relationship between the oxygen vacancy concentration and the adsorptivecatalytic performance of metal oxides.Herein,we establish a correlation between oxygen vacancy concentration and adsorptive-catalytic properties by using tungsten oxide(WO_(x))as model catalysts.It is revealed that high-concentration oxygen vacancy is beneficial for enhancing the binding between tungsten oxide and LiPSs,reducing the energy barrier of Li_(2)S decomposition,and promoting polysulfide conversion kinetics.Consequently,the Li-S batteries using the tungsten oxide with high-concentration oxygen vacancies deliver high initial discharge capacity of 1169 mA h g^(-1)at 0.2 C and 865 mA h g^(-1)at 2 C,low attenuation rate of 0.064%per cycle over 1100 cycles at 2 C.With a high sulfur area loading of 5.34 mg cm^(-2),the Li-S batteries still exhibit high initial gravimetric capacity of 982 mA h g^(-1)at 0.1 C and areal capacity of 5.92 mA h cm^(-2).This work promotes the feasibility of defect engineering on metal oxides as an effective mean to enhance the practicality of Li-S batteries. 展开更多
关键词 Shuttl eeffect Oxygen vacancy INTERLAYER Lithium-sulfur batteries
下载PDF
Tunable vacancy defect chemistry on free-standing carbon cathode for lithium-sulfur batteries 被引量:2
15
作者 Xi Zhang Xiaohong Liu +1 位作者 Wei Zhang Yingze Song 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期354-359,共6页
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io... The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2). 展开更多
关键词 Li–S chemistry Tunable vacancy defects Free-standing cathode Electrocatalytic activity Sulfur redox reaction kinetics
下载PDF
Vacancy-modified bimetallic FeMoS_(x)/CoNiP_(x) heterostructure array for efficient seawater splitting and Zn-air battery 被引量:1
16
作者 Ansheng Wang Shan Gao +3 位作者 Jiaguo Yan Chunning Zhao Meng Yu Weichao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期533-542,I0012,共11页
The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/... The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/Co Ni P_(x)OER electrocatalyst is exploited.Benefiting from the electron redistribution and reaction kinetics modulation resulting from vacancy introduction and heterojunction formation,it yields ultralow OER overpotentials of 196,276,303 m V in 1 M KOH and 197,318,348 m V in 1 M KOH+seawater at 10,500,1000 m A cm^(-2),respectively,surviving 600 h at 800 m A cm^(-2)without obvious decay.Further,FeMoS_(x)/CoNiP_(x)-based Zn-air battery not only affords the high peak power density of 214.5 m W cm^(-2)but also exhibits the small voltage gap of 0.698 V and long lifetime of 500 h at 10 m A cm^(-2),overmatching overwhelming majority of reported advanced catalysts.It is revealed experimentally that the OER process on rationally designed Fe Mo S_(x)/Co Ni P_(x)follows the adsorbate evolution mechanism and the ratedetermining step shifts from^(*)OOH formation in individual building blocks to^(*)OOH deprotonation process in FeMoS_(x)/CoNiP_(x),providing the directly proof of how the vacancy introduction and heterojunction formation affect the reaction kinetics. 展开更多
关键词 vacancy HETEROJUNCTION Oxygen evolution reaction Seawater splitting Zn-air battery
下载PDF
Efficient electrocatalytic conversion of N_(2) to NH_(3) using oxygen-rich vacancy lithium niobate cubes 被引量:1
17
作者 Shuhui Fan Qi Wang +3 位作者 Yanan Hu Qiang Zhao Jinping Li Guang Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期132-138,共7页
Instead of the energy-intensive Haber-Bosch process,the researchers proposed a way to produce ammonia using water and nitrogen as feedstock,powered by electricity,without polluting the environment.Nevertheless,how to ... Instead of the energy-intensive Haber-Bosch process,the researchers proposed a way to produce ammonia using water and nitrogen as feedstock,powered by electricity,without polluting the environment.Nevertheless,how to design efficient electrocatalyst for electrocatalytic nitrogen reduction reaction(NRR)is still urgent and challenging.Herein,a strategy is proposed to adjust the morphology and surface electronic structure of electrocatalyst by optimizing material synthesis method.LiNbO3(lithium niobate,LN)cubes with oxygen-rich vacancy and regular morphology were synthesized by hydrothermal synthesis and followed molten salt calcination process,which were used for electrocatalytic NRR under mild conditions.Compared with LN nanoparticles synthesized by solid phase reaction,LN cubes exhibit better NRR performance,with the highest ammonia yield rate(13.74μg.h^(-1).mg^(-1))at the best potential of-0.45V(vs.reversible hydrogen electrode,RHE)and the best Faradaic efficiency(85.43%)at-0.4 V.Moreover,LN cubes electrocatalyst also demonstrates high stability in 7 cycles and 18 h current-time tests.Further investigation of the reaction mechanism confirmed that the structure of oxygen vacancy could adjust the electronic structure of the electrocatalyst,which was conducive to the adsorption and activation of N_(2) molecule and also increased the ECSA of electrocatalyst,thus providing more active sites for the NRR process. 展开更多
关键词 Nitrogen reduction reaction Ammonia yield rate Oxygen vacancy LiNbO_(3)cubes Electronic structure
下载PDF
Ultrafine Vacancy-Rich Nb_(2)O_(5)Semiconductors Confined in Carbon Nanosheets Boost Dielectric Polarization for High-Attenuation Microwave Absorption 被引量:1
18
作者 Zhe Su Shan Yi +5 位作者 Wanyu Zhang Xiaxi Xu Yayun Zhang Shenghu Zhou Bo Niu Donghui Long 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期478-493,共16页
The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and re... The integration of nano-semiconductors into electromagnetic wave absorption materials is a highly desirable strategy for intensifying dielectric polarization loss;achieving high-attenuation microwave absorption and realizing in-depth comprehension of dielectric loss mechanisms remain challenges.Herein,ultrafine oxygen vacancy-rich Nb_(2)O_(5)semiconductors are confined in carbon nanosheets(ov-Nb_(2)O_(5)/CNS)to boost dielectric polarization and achieve high attenuation.The polarization relaxation,electromagnetic response,and impedance matching of the ov-Nb_(2)O_(5)/CNS are significantly facilitated by the Nb_(2)O_(5)semiconductors with rich oxygen vacancies,which consequently realizes an extremely high attenuation performance of-80.8 dB(>99.999999%wave absorption)at 2.76 mm.As a dielectric polarization center,abundant Nb_(2)O_(5)–carbon heterointerfaces can intensify interfacial polarization loss to strengthen dielectric polarization,and the presence of oxygen vacancies endows Nb_(2)O_(5)semiconductors with abundant charge separation sites to reinforce electric dipole polarization.Moreover,the three-dimensional reconstruction of the absorber using microcomputer tomography technology provides insight into the intensification of the unique lamellar morphology regarding multiple reflection and scattering dissipation characteristics.Additionally,ov-Nb_(2)O_(5)/CNS demonstrates excellent application potential by curing into a microwave-absorbing,machinable,and heat-dissipating plate.This work provides insight into the dielectric polarization loss mechanisms of nano-semiconductor/carbon composites and inspires the design of high-performance microwave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Nb_(2)O_(5)semiconductor Dielectric polarization loss Oxygen vacancy Nb_(2)O_(5)-carbon hetero-interface
下载PDF
Tuning Li nucleation and growth via oxygen vacancy-enriched 3D flexible self-supporting protection layer of P-Mn_(3)O_(4-x)for advanced lithium-sulfur batteries
19
作者 Tao Liu Jing Li +4 位作者 Hongtao Cui Yuanyuan Liu Kaihua Liu Huiying Wei Meiri Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期339-348,I0009,共11页
Lithium sulfur batteries have attracted much attention due to their high theoretical specific energy and environmental friendliness.However,the practical application is severely plagued by the cycling life issues resu... Lithium sulfur batteries have attracted much attention due to their high theoretical specific energy and environmental friendliness.However,the practical application is severely plagued by the cycling life issues resulting from the uncontrollable generation and growth of Li dendrites.Herein,an innovative 3D flexible self-supporting Li anode protection layer of P-Mn_(3)O_(4-x)is constructed via a facile solvothermal method followed by an annealing process.Benefiting from the rich oxygen vacancies coupled with the 3D flexible self-supporting skeleton,abundant lithiophilic sites and high ionic conductivity are obtained,which succeed in guiding Li+homogeneous adsorption and redistribution,accelerating Li+diffusion rate,inducing Li+uniform deposition and nucleation.DFT calculations and experimental results conclusively demonstrate such a protection mechanism.Meanwhile,the effective anchoring and catalytic nature of polar P-Mn_(3)O_(4-x)can also be applied as an immobilization-diffusion-conversion host to improve polysulfides redox.Taking advantage of these merits,super-stable functions for Li symmetric cell matched with P-Mn_(3)O_(4-x)layer are achieved,which exhibits an ultralong lifespan of>5000 h with an ultralow overpotential of 20 m V,far lower than that of bare Li symmetric cell(overpotential of 800 m V only after 250 h)at high current densities of 5 m A cm^(-2)and high plating/stripping capacity of 10 m A h cm^(-2).Even in Li|P-Mn_(3)O_(4-x)||S full cell at 1 C,a high initial discharge specific capacity of 843.1 m A h g^(-1)is still delivered with ultralow capacity fading rate of 0.07%per cycle after 250 cycles,further confirming the synergistic regulation of P-Mn_(3)O_(4-x)for Li nucleation behavior.This work illustrates a sufficient guarantee of 3D protection layer coupled with oxygen vacancies in guiding Li diffusion and nucleation behavior and provides new guidance for promoting the development of advanced Li-S batteries. 展开更多
关键词 Oxygen vacancy P-DOPING ithium sulfur batteries Protection layers
下载PDF
State-of-the-art advances in vacancy defect engineering of graphitic carbon nitride for solar water splitting
20
作者 Jie Li Kaige Huang +11 位作者 Yanbin Huang Yumin Ye Marcin Ziółek Zhijie Wang Shizhong Yue Mengmeng Ma Jun Liu Kong Liu Shengchun Qu Zhi Zhao Yanjun Zhang Zhanguo Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期16-34,共19页
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride... Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4). 展开更多
关键词 g-C_(3)N_(4) vacancy defect water splitting PHOTOCATALYST charge carrier
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部