In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat...In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.展开更多
The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were inves...The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.展开更多
We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both...We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both samples are characterized by transmission electron microscopy, and the density and the size distribution of vacancy defect clusters are determined. Their transmittances are measured before and after irradiating the samples by protons with energy E = 100 keV and dose φ = 6 × 10^11/mm^2. Our experimental results show that the density and the size of vacancy defect clusters increase with the increase of irradiation doses in the irradiated pure aluminium foils. As irradiation dose increases, vacancies incline to form larger defect clusters. In the irradiated filter, a large number of banded void defects are observed at the agglomerate boundary, which results in the degradation of the optical and mechanical performances of the filter after proton irradiation.展开更多
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io...The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).展开更多
Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to inves- tigate the tensile behavior of a graphene which contains a single va...Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to inves- tigate the tensile behavior of a graphene which contains a single vacancy defect. Our results suggest that because of the single vacancy, the fracture strength of graphene losses about 17.7%. The stress concentration around the vacancy defect leads to the destruction of nearby six-member rings structure, which forms the initial crack. The propagation direction of this crack in defective graphene is at an angle of 60° to the tensile direction initially, but then becomes perpendicular to the tensile direction.展开更多
The effects of vacancy defects on the thermal conductivity of Ge thin films were investigated by employing molecular dynamics (MD) simula- tions and theoretical analysis based on the Boltzmann equation. Both the MD ...The effects of vacancy defects on the thermal conductivity of Ge thin films were investigated by employing molecular dynamics (MD) simula- tions and theoretical analysis based on the Boltzmann equation. Both the MD and theoretical results show that the lattice thermal conductivity dramatically decreases with the increasing of vacancy concentration at 400 and 500 K. In addition, the dependence of vacancy concentration on the thermal conductivity of Ge thin films becomes less sensitive as the temperature increases. Theoretical results also confirm that the major part of the lattice thermal conductivity reduction is associated with the point-defect scattering and phonon-phonon scattering processes.展开更多
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with p...We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.展开更多
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride...Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).展开更多
The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals ...The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals have been calculated. It was found that the formation enthalpy of oxygen vacancies can be decreased evidently by doping valence-changeable ions. The experimental results were discussed and a new reduction process of the photorefractive LN crystal at a relatively low temperature was proposed, and the reduced crystals showed a good effect in practical use.展开更多
CeO_(2) with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO_(2)−δhollow multi-shelled structure(HoMS)by spray drying.It turned out th...CeO_(2) with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO_(2)−δhollow multi-shelled structure(HoMS)by spray drying.It turned out that as the proportion of CeO_(2) increases,the overpotential and Tafel slope of NiO-CeO_(2)−δHoMSs first decreased and then increased.This is mainly because the construction of the NiO-CeO_(2)−δHoMSs not only increases the specific surface area,but also introduces oxygen vacancy defects,thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction(OER)performance.However,the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO_(2)−δHoMSs,which is mainly due to the decrease of the specific surface area,the reduction of oxygen vacancy defects,and the weakening of interface charge transfer capability.Furthermore,a series of heterogeneous composite HoMSs,such as Ni/Co,Mo/Ni,Al/Ni and Fe/Ni oxides was successfully constructed by spray drying,which enriched the diversity of HoMSs.展开更多
Bismuth titanate (Bi_(4)Ti_(3)O_(12),BIT)piezoelectric materials have attracted increasing attention due to their high-temperature applications.However,it is quite challenging to simultaneously achieve outstanding pie...Bismuth titanate (Bi_(4)Ti_(3)O_(12),BIT)piezoelectric materials have attracted increasing attention due to their high-temperature applications.However,it is quite challenging to simultaneously achieve outstanding piezoelectric properties and high Curie temperature in BIT-based systems.In this study,oxygen vacancy defects tailoring strategy was utilized to solve this problem,excellent piezoelectric coefficient(32.1 pC/N),and ultrahigh Curie temperature(659℃)are gotten in Bi_(4)Ti_(3)-x(Mn_(1/3)Nb_(2/3))xO_(12)(BTMN)ceramics,which are among the top values in the BIT-based ceramics.More importantly,the(Mn_(1/3)Nb_(2/3))(4+d)+complex-ion modified Bi_(4)Ti_(3)O_(12)-based ceramics are characterized with excellent piezoelectric stability up to 500℃(d33>30.0 pC/N at 500℃))and significantly reduced conductivity(only~10^(-7)U-1 cm^(-1)at 500℃).Moreover,enhanced ferroelectricity and good dielectric stability were also obtained.The better comprehensive properties can be ascribed to two aspects.First,the concentration of oxygen vacancy defects is obviously reduced,and their distribution is effectively controlled in BITMN ceramics.Second,the introduction of(Mn_(1/3)Nb_(2/3))^((4+δ)+)complex-ion gives rise to the antiphase boundaries and massive ferroelectric domain walls.This works not only reveal the high potential of BITMN ceramics for high-temperature piezoelectric applications but also deepen the understanding of the structure-properties relationship in BIT-based materials.展开更多
MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is una...MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications.展开更多
Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic st...Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic state of a system.The VNcan induce antiferromagnetic state and the VGaindirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN.The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+(d4) into Mn2+(d5).The introduced VNand the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing,as well as the coexistence of Mn3+(d4) and Mn2+(d5) are found in GaMnN films grown by metal–organic chemical vapor deposition.The analysis suggests that a big proportion of Mn3+changing into Mn2+will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material.展开更多
The introduction of vacancy defects in semiconductors has been proven to be a highly effective approach to improve their photocatalytic activity owing to their advantages of promoting light absorption,facilitating pho...The introduction of vacancy defects in semiconductors has been proven to be a highly effective approach to improve their photocatalytic activity owing to their advantages of promoting light absorption,facilitating photogenerated carrier separation,optimizing electronic structure,and enabling the production of reactive radicals.Herein,we outline the state-of-the-art vacancy-engineered photocatalysts in various applications and reveal how the vacancies influence photocatalytic performance.Specifically,the types of vacancy defects,the methods for tailoring vacancies,the advanced characteri-zation techniques,the categories of photocatalysts with vacancy defects,and the corresponding photocatalytic behaviors are presented.Meanwhile,the methods of vacancies creation and the related photocatalytic performance are correlated,which can be very useful to guide the readers to quickly obtain in-depth knowledge and to have a good idea about the selection of defect engineering methods.The precise characterization of vacancy defects is highly challenging.This review describes the accurate use of a series of characterization techniques with detailed comments and suggestions.This represents the uniqueness of this comprehensive review.The challenges and development prospects in engineering photocatalysts with vacancy defects for practical applications are discussed to provide a promising research direction in this field.展开更多
Improving brittle behavior and mechanical properties is still a big challenge for high-temperature structural materials.By means of first-principles calculations,in this paper,we systematically investigate the effect ...Improving brittle behavior and mechanical properties is still a big challenge for high-temperature structural materials.By means of first-principles calculations,in this paper,we systematically investigate the effect of vacancy and oxygen occupation on the elastic properties and brittle-or-ductile behavior on Mo_(5)Si_(3).Four vacancies(Si_(-Va1),Si_(-Va2),Mo_(-Va1),Mo_(-Va2))and oxygen occupation models(O_(Mo1),O_(Mo2),O_(-Si1),O_(-Si2))are selected for research.It is found that Mo_(-Va2) vacancy has the stronger structural stability in the ground state in comparison with other vacancies.Besides,the deformation resistance and hardness of the parent Mo_(5)Si_(3) are weakened due to the introduction of different vacancy defects and oxygen occupation.The ratio of B/G indicates that oxygen atoms occupation and vacancy defects result in brittle-to-ductile transition for Mo_(5)Si_(3).These vacancies and the oxygen atoms occupation change the localized hybridization between Mo-Si and Mo-Mo atoms.The weaker O-Mo bond is a contributing factor for the excellent ductile behavior in the O_(-Si2) model for Mo_(5)Si_(3).展开更多
Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photoca...Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photocatalysis,and photovoltaic applications.However,the long-term maintenance and use of photo-induced vacancy defects remain elusive,because of their rapid self-healing upon air exposure.In this study,we demonstrate that photo-induced oxygen vacancy(PIVO)defects can be stabilized by the photoexcitation of metal–organic framework(MOF)materials,which is crucial for SERS analysis.The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere,owing to the combination of steric hindrance and electron delocalization around vacancy defects,which significantly contrasts the short lifetime(within minutes)of PIVO defects in metal-oxide semiconductors.With the formation of stable PIVO defects,a prominent SERS enhancement surpassing that of pristine MOFs is achieved,accompanied with a reduced limit of detection by three orders of magnitude.Moreover,the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules,such as dopamine and bisphenol A.展开更多
The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is d...The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young's modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young's modulus with the increasing concentration of monoatomic-vacancy defects (Le., the slope of =0.03) is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 A is observed.展开更多
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele...Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.展开更多
Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In ...Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.展开更多
In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal condu...In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp--sp2 network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.展开更多
基金Funded by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0628)the Taiyuan Institute of Technology Scientific Research Initial Funding (No. 2022KJ072)+2 种基金the Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technologythe Fundamental Research Funds for the Central Universities (Nos. 2017TS004, 2017TS006, and GK201704005)Supported by HZWTECH for providing computational facilities
文摘In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50671042)the Program for Innovative Research Team of Jangsu University and the Program for Exellent Talents of Jangsu University (Grant No. 07JDG032)
文摘We investigate the microstructures of the pure aluminium foil and filter used on the space solar telescope, irradiated by photons with different doses. The vacancy defect clusters induced by proton irradiation in both samples are characterized by transmission electron microscopy, and the density and the size distribution of vacancy defect clusters are determined. Their transmittances are measured before and after irradiating the samples by protons with energy E = 100 keV and dose φ = 6 × 10^11/mm^2. Our experimental results show that the density and the size of vacancy defect clusters increase with the increase of irradiation doses in the irradiated pure aluminium foils. As irradiation dose increases, vacancies incline to form larger defect clusters. In the irradiated filter, a large number of banded void defects are observed at the agglomerate boundary, which results in the degradation of the optical and mechanical performances of the filter after proton irradiation.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials+2 种基金Southwest University of Science and Technology(Grant Nos.21fksy24 and 18ZD320304)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)。
文摘The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).
基金supported by the Open Research Fund Program(2042014kf0002)of Wuhan Universitythe National Natural Science Foundation of China(11372230)the Open Research Fund Program(HBKLWJ-2014F02)of Key Laboratory of Hubei Province for Water Jet Theory&Technology
文摘Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to inves- tigate the tensile behavior of a graphene which contains a single vacancy defect. Our results suggest that because of the single vacancy, the fracture strength of graphene losses about 17.7%. The stress concentration around the vacancy defect leads to the destruction of nearby six-member rings structure, which forms the initial crack. The propagation direction of this crack in defective graphene is at an angle of 60° to the tensile direction initially, but then becomes perpendicular to the tensile direction.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in the Universities of the Ministry of Education of China (No. IRT0520)
文摘The effects of vacancy defects on the thermal conductivity of Ge thin films were investigated by employing molecular dynamics (MD) simula- tions and theoretical analysis based on the Boltzmann equation. Both the MD and theoretical results show that the lattice thermal conductivity dramatically decreases with the increasing of vacancy concentration at 400 and 500 K. In addition, the dependence of vacancy concentration on the thermal conductivity of Ge thin films becomes less sensitive as the temperature increases. Theoretical results also confirm that the major part of the lattice thermal conductivity reduction is associated with the point-defect scattering and phonon-phonon scattering processes.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant Nos.11974253 and 11774248)。
文摘We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
基金This work is supported mainly by the National Key Research and Development Program of China(Grant No.2018YFE0204000)the National Natural Science Foundation of China(Grant Nos.21975245,U20A20206,51972300,12004094,and 32101004)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the Science and Technology Research and Development Program of Handan(Grant No.21422111246)Prof.Y.Huang.also acknowledges the support from the Doctoral Special Fund Project of Hebei University of Engineering.Prof.K.Liu.appreciates the support from Youth Innovation Promotion Association,the Chinese Academy of Sciences(Grant No.2020114)the Beijing Nova Program(Grant No.2020117)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515110578).
文摘Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).
文摘The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals have been calculated. It was found that the formation enthalpy of oxygen vacancies can be decreased evidently by doping valence-changeable ions. The experimental results were discussed and a new reduction process of the photorefractive LN crystal at a relatively low temperature was proposed, and the reduced crystals showed a good effect in practical use.
基金This work was supported by the National Natural Science Foundation of China(Nos.21931012,51932001,52372170,51972306)the Natural Science Foundation of Hebei Province,China(Nos.E2022208023,E2021208036)the Science and the Technology Project of Hebei Education Department,China(No.QN2023048).
文摘CeO_(2) with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO_(2)−δhollow multi-shelled structure(HoMS)by spray drying.It turned out that as the proportion of CeO_(2) increases,the overpotential and Tafel slope of NiO-CeO_(2)−δHoMSs first decreased and then increased.This is mainly because the construction of the NiO-CeO_(2)−δHoMSs not only increases the specific surface area,but also introduces oxygen vacancy defects,thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction(OER)performance.However,the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO_(2)−δHoMSs,which is mainly due to the decrease of the specific surface area,the reduction of oxygen vacancy defects,and the weakening of interface charge transfer capability.Furthermore,a series of heterogeneous composite HoMSs,such as Ni/Co,Mo/Ni,Al/Ni and Fe/Ni oxides was successfully constructed by spray drying,which enriched the diversity of HoMSs.
基金supported by the National Natural Science Foundation of China,China(Grant No.51932010)by the National Natural Science Foundation of Shanghai,China(Grant No.19ZR1464600).
文摘Bismuth titanate (Bi_(4)Ti_(3)O_(12),BIT)piezoelectric materials have attracted increasing attention due to their high-temperature applications.However,it is quite challenging to simultaneously achieve outstanding piezoelectric properties and high Curie temperature in BIT-based systems.In this study,oxygen vacancy defects tailoring strategy was utilized to solve this problem,excellent piezoelectric coefficient(32.1 pC/N),and ultrahigh Curie temperature(659℃)are gotten in Bi_(4)Ti_(3)-x(Mn_(1/3)Nb_(2/3))xO_(12)(BTMN)ceramics,which are among the top values in the BIT-based ceramics.More importantly,the(Mn_(1/3)Nb_(2/3))(4+d)+complex-ion modified Bi_(4)Ti_(3)O_(12)-based ceramics are characterized with excellent piezoelectric stability up to 500℃(d33>30.0 pC/N at 500℃))and significantly reduced conductivity(only~10^(-7)U-1 cm^(-1)at 500℃).Moreover,enhanced ferroelectricity and good dielectric stability were also obtained.The better comprehensive properties can be ascribed to two aspects.First,the concentration of oxygen vacancy defects is obviously reduced,and their distribution is effectively controlled in BITMN ceramics.Second,the introduction of(Mn_(1/3)Nb_(2/3))^((4+δ)+)complex-ion gives rise to the antiphase boundaries and massive ferroelectric domain walls.This works not only reveal the high potential of BITMN ceramics for high-temperature piezoelectric applications but also deepen the understanding of the structure-properties relationship in BIT-based materials.
基金supported by the National Natural Science Foundation of China(52072196)the Major Basic Research Program of the Natural Science Foundation of Shandong Province(ZR2020ZD09)。
文摘MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204008,11075176,and 11505211)the National Key Basic Research Special Foundation of China(Grant No.2013CB328705)
文摘Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic state of a system.The VNcan induce antiferromagnetic state and the VGaindirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN.The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+(d4) into Mn2+(d5).The introduced VNand the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing,as well as the coexistence of Mn3+(d4) and Mn2+(d5) are found in GaMnN films grown by metal–organic chemical vapor deposition.The analysis suggests that a big proportion of Mn3+changing into Mn2+will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material.
基金This study was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project“DepollutAir.”Yang Ding is grateful for the financial support of the China Scholarship Council(201808310127)This study was financially supported by the National Natural Science Foundation of China(U20A20122)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of Education,the Program of Introducing Talents of Discipline to Universities-Plan 111(Grant No.B20002)the Ministry of Science and Technology and the Ministry of Education of China,and the National Key R&D Program of China(2016YFA0202602).
文摘The introduction of vacancy defects in semiconductors has been proven to be a highly effective approach to improve their photocatalytic activity owing to their advantages of promoting light absorption,facilitating photogenerated carrier separation,optimizing electronic structure,and enabling the production of reactive radicals.Herein,we outline the state-of-the-art vacancy-engineered photocatalysts in various applications and reveal how the vacancies influence photocatalytic performance.Specifically,the types of vacancy defects,the methods for tailoring vacancies,the advanced characteri-zation techniques,the categories of photocatalysts with vacancy defects,and the corresponding photocatalytic behaviors are presented.Meanwhile,the methods of vacancies creation and the related photocatalytic performance are correlated,which can be very useful to guide the readers to quickly obtain in-depth knowledge and to have a good idea about the selection of defect engineering methods.The precise characterization of vacancy defects is highly challenging.This review describes the accurate use of a series of characterization techniques with detailed comments and suggestions.This represents the uniqueness of this comprehensive review.The challenges and development prospects in engineering photocatalysts with vacancy defects for practical applications are discussed to provide a promising research direction in this field.
基金supported by grants from the Province Nature Science Foundation of Liaoning Province(Grant No.2019JH/30100019)。
文摘Improving brittle behavior and mechanical properties is still a big challenge for high-temperature structural materials.By means of first-principles calculations,in this paper,we systematically investigate the effect of vacancy and oxygen occupation on the elastic properties and brittle-or-ductile behavior on Mo_(5)Si_(3).Four vacancies(Si_(-Va1),Si_(-Va2),Mo_(-Va1),Mo_(-Va2))and oxygen occupation models(O_(Mo1),O_(Mo2),O_(-Si1),O_(-Si2))are selected for research.It is found that Mo_(-Va2) vacancy has the stronger structural stability in the ground state in comparison with other vacancies.Besides,the deformation resistance and hardness of the parent Mo_(5)Si_(3) are weakened due to the introduction of different vacancy defects and oxygen occupation.The ratio of B/G indicates that oxygen atoms occupation and vacancy defects result in brittle-to-ductile transition for Mo_(5)Si_(3).These vacancies and the oxygen atoms occupation change the localized hybridization between Mo-Si and Mo-Mo atoms.The weaker O-Mo bond is a contributing factor for the excellent ductile behavior in the O_(-Si2) model for Mo_(5)Si_(3).
基金supports from the National Key Research and Development Program of China(No.2020YFB1505703)This work was supported by the National Natural Science Foundation of China(Nos.52172299,22175198,51772319,51772320,and 51972331)+3 种基金Z.G.Z would like to acknowledge the support from the External Cooperation Program of the Chinese Academy of Sciences(No.121E32KYSB20190008)Six Talent Peaks Project of Jiangsu Province(No.XCL-170)S.C would like to acknowledge the support from the Youth Innovation Promotion Association,CAS(No.2018356)the Outstanding Youth Fund of Jiangxi(No.20192BCBL23027).
文摘Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photocatalysis,and photovoltaic applications.However,the long-term maintenance and use of photo-induced vacancy defects remain elusive,because of their rapid self-healing upon air exposure.In this study,we demonstrate that photo-induced oxygen vacancy(PIVO)defects can be stabilized by the photoexcitation of metal–organic framework(MOF)materials,which is crucial for SERS analysis.The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere,owing to the combination of steric hindrance and electron delocalization around vacancy defects,which significantly contrasts the short lifetime(within minutes)of PIVO defects in metal-oxide semiconductors.With the formation of stable PIVO defects,a prominent SERS enhancement surpassing that of pristine MOFs is achieved,accompanied with a reduced limit of detection by three orders of magnitude.Moreover,the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules,such as dopamine and bisphenol A.
文摘The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young's modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young's modulus with the increasing concentration of monoatomic-vacancy defects (Le., the slope of =0.03) is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 A is observed.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).
文摘Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
基金Project supported by the China Postdoctoral Science Foundation(No.201104619)the Fund of Shaanxi Provincial Educational Department (No.2010JK775)
文摘Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.
基金Project supported by the National Natural Science Foundation of China(Grant No.51202032)the National Key Project for Basic Research of China(Grant No.2011CBA00200)+1 种基金the Natural Science Foundation of Fujian Province,China(Grant Nos.2012J01004 and 2013J01009)the Funds from the Fujian Provincial Education Bureau,China(Grant No.GA12064)
文摘In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp--sp2 network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.