Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al2O3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decrea...Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al2O3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary(GB) plane and reaches the minimum on the GB plane(at the atomic layer next to the GB) for an O(Al) vacancy.The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot.Moreover,the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane,which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al2O3.展开更多
基金Project supported by the National Key Basic Research and Technology Program,China(Grant No.2010CB731601)the National Natural Science Foundation of China(Grant No.50871057)
文摘Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al2O3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary(GB) plane and reaches the minimum on the GB plane(at the atomic layer next to the GB) for an O(Al) vacancy.The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot.Moreover,the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane,which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al2O3.