The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for t...The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for the reactions to form these impurities, the disproportionation of CO and the reactions of metallic aluminum with CO, decrease with decreasing pressure. The lg pCO-1/T diagram of metallic aluminum-CO system agrees with the experimental results, indicating that the reaction rate is very high and this system in vacuum is approximately in equilibrium; therefore, the equilibrium diagram can be used to predict the possible reactions in this system in vacuum.展开更多
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent ...As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.展开更多
The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soakin...The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 ℃, 1 h and 10℃·min-1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10-3 mm3(Nm)-1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film ofTi, Si, A1, and Fe on the Ti3SiC2 friction surface. The self- antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.展开更多
The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 a...The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 and parity-allowed 4f5d→4f^2 transitions were observed simultaneously. In addition, it was also observed that the intensity of 4f5d→4f^2 emission bands increased relative to the intensity of 4f^2→4f^2 emissions with increasing temperature. The thermal equilibrium model of energy levels was employed with respect to the lowest 4f5d state and ^1S0 state of LaB3O6:Pr^3+ , as a result of which the fitted curve had a good agreement with the experiment values, which clarified the physical nature of temperature-dependent emission characteristics of Pr^3+ in LaB3O6.展开更多
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and stro...The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.展开更多
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and anneali...In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^-2m^2/(V·s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 ℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^-2m^2/(V·s).展开更多
The tribologieal performances between Si3N4 ceramic balls and GCr15 steel disks without lubrication both in air and in vacuum (6 × 10^-3Pa) are investigated. The results show that the friction coefficient and w...The tribologieal performances between Si3N4 ceramic balls and GCr15 steel disks without lubrication both in air and in vacuum (6 × 10^-3Pa) are investigated. The results show that the friction coefficient and wear in vacuum are smaller than those in air. The friction mainly occurs between steel and steel in air because the steel is obvious to adhere on the ceramic surface. The ceramic and steel are hard to adhere in vacuum. The function of mechanical plough and the rotation of small wear particles in the contact region reduce the friction and wear between the ceramic and steel in vacuum.展开更多
For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microsc...TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray electron spectroscopy,and fluorescence spectroscopy.At room temperature,with a relative humidity of 50.0%,the total gas flow rate of 1.0 L·min-1,the space velocity of 1.05×10^(4) h^(-1),and toluene volume concentration of 25.0µL·L^(-1),two 6 W vacuum ultraviolet lamps were used as light sources to catalyze,degrade,and mineralize toluene.The results show that the prepared catalyst is in the shape of nano-ribbons.The loading of Co_(3)O_(4) inhibits the recombina-tion of photogenerated electrons and holes and can effectively improve the catalytic performance.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%Co_(3)O_(4) has the best catalytic effect.When N2 was used as a carrier gas,the degradation rate of tol-uene was only 34.7%.The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light.When air was used as a carrier gas,O_(3) was produced.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%and vacuum ultraviolet synergistical-ly promote toluene degradation.The highest degradation rate of toluene was 91.7%and the mineralization rate was 74.6%.The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.展开更多
基金Project(51364020)supported by the National Natural Science Foundation of China
文摘The formation conditions of C, Al4C3 and Al2O3 in the Al Cl disproportionation process in vacuum to produce aluminum was investigated by thermodynamics analysis. It is demonstrated that the required temperatures for the reactions to form these impurities, the disproportionation of CO and the reactions of metallic aluminum with CO, decrease with decreasing pressure. The lg pCO-1/T diagram of metallic aluminum-CO system agrees with the experimental results, indicating that the reaction rate is very high and this system in vacuum is approximately in equilibrium; therefore, the equilibrium diagram can be used to predict the possible reactions in this system in vacuum.
基金Supported by the Project of the Combination of Industry and Research by the Ministry of Education of China and Guang-dong Province, China(No.0712226100023)
文摘As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.
基金Funded by the Natural Science Foundation of Hubei Province(No.2012FFB05104)the National Natural Science Foundation of China (No.51275370)+3 种基金the Fundamental Research Funds for the Central Universities (No.2010-II-020)the Project for Science and Technology Plan of Wuhan City (No.2013010501010139)the Academic Leader Program of Wuhan City (No.201150530146)the Project for Teaching and Research Project of Wuhan University of Technology(No.2012016)
文摘The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 ℃, 1 h and 10℃·min-1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10-3 mm3(Nm)-1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film ofTi, Si, A1, and Fe on the Ti3SiC2 friction surface. The self- antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.
基金Project supported by the National Natural Science Foundation of China (10204001 ,10374002 and 10434030) the"973"Program(2003CB314707)Beijing Jiaotong University Program(2006XM038)
文摘The vacuum ultraviolet (VUV) luminescent properties of Pr^3+ -activated LaB3O6 were investigated with highenergetic synchrotron radiation from 20 to 300 K. In the emission spectra, the parity-forbidden 4f^2→4f^2 and parity-allowed 4f5d→4f^2 transitions were observed simultaneously. In addition, it was also observed that the intensity of 4f5d→4f^2 emission bands increased relative to the intensity of 4f^2→4f^2 emissions with increasing temperature. The thermal equilibrium model of energy levels was employed with respect to the lowest 4f5d state and ^1S0 state of LaB3O6:Pr^3+ , as a result of which the fitted curve had a good agreement with the experiment values, which clarified the physical nature of temperature-dependent emission characteristics of Pr^3+ in LaB3O6.
基金the Program for New Century Talents in the University of China (NCET, 04-0978)the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20040730019)
文摘The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774013 and 10804006)the National High Technology Research and Development Program of China (Grant No 2006AA03Z0412)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070004024)the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education (Grant No 20070004031)the Beijing NOVA program (Grant No 2007A024)the the 111 of China (Grant No B08002)the research grants from the Academy of Sciences for the Developing World
文摘In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^-2m^2/(V·s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 ℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^-2m^2/(V·s).
文摘The tribologieal performances between Si3N4 ceramic balls and GCr15 steel disks without lubrication both in air and in vacuum (6 × 10^-3Pa) are investigated. The results show that the friction coefficient and wear in vacuum are smaller than those in air. The friction mainly occurs between steel and steel in air because the steel is obvious to adhere on the ceramic surface. The ceramic and steel are hard to adhere in vacuum. The function of mechanical plough and the rotation of small wear particles in the contact region reduce the friction and wear between the ceramic and steel in vacuum.
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
文摘TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray electron spectroscopy,and fluorescence spectroscopy.At room temperature,with a relative humidity of 50.0%,the total gas flow rate of 1.0 L·min-1,the space velocity of 1.05×10^(4) h^(-1),and toluene volume concentration of 25.0µL·L^(-1),two 6 W vacuum ultraviolet lamps were used as light sources to catalyze,degrade,and mineralize toluene.The results show that the prepared catalyst is in the shape of nano-ribbons.The loading of Co_(3)O_(4) inhibits the recombina-tion of photogenerated electrons and holes and can effectively improve the catalytic performance.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%Co_(3)O_(4) has the best catalytic effect.When N2 was used as a carrier gas,the degradation rate of tol-uene was only 34.7%.The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light.When air was used as a carrier gas,O_(3) was produced.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%and vacuum ultraviolet synergistical-ly promote toluene degradation.The highest degradation rate of toluene was 91.7%and the mineralization rate was 74.6%.The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.