A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted u...A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted using a Cu cathode in MgF2– LiF – KCl molten salt at 1043 K by applying an average current of 1.44 A for 12.5 h. The electrolysis of calcined North Korean magnesite and seawater Mg O clinker yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 89.6–92.4%. The electrolysis of oxidized Mg O-C refractory brick, aged ferronickel slag, and ferronickel slag yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 59.3–92.3%. The vacuum distillation of Mg alloys obtained was conducted at 1300 K for 10 h to produce high-purity Mg metal. After vacuum distillation, Mg metal with a purity of above 99.994% was obtained. Therefore, this study demonstrates the feasibility of the production of high-purity Mg metal from various Mg O resources using a novel electrolytic process with a Cu cathode, followed by vacuum distillation.展开更多
In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten s...In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated.展开更多
A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of ...A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.展开更多
Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the acti...Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the activity coefficients of Pb Sn-Sb alloy system in the process of vacuum distillation. The calculated results show that the content of Sn in vapor phase increases with the increasing distillation temperature and content of Sn in liquid phase. However, the content of Sn in vapor phase is only 0.45% (mass fraction) while 97% in liquid phase at 1100 ℃, which shows that the separating effect is very well. Experimental investigations on the separation of Pb-Sn-Sb ternary alloy were carried out in the distillation temperature range of 1100-1300 ℃ under vacuum condition. It is found that the Sn content in vapor phase is 0.54% while 97% in liquid phase at 1100 ℃. Finally, the predicted data were compared with the experimental results showing good agreement with each other.展开更多
Vacuum distillation is a technique suitable for low boiling and melting point materials,to remove the heavy and low vapor pressure impurities at low level.As indium has low melting point and high boiling point,it is s...Vacuum distillation is a technique suitable for low boiling and melting point materials,to remove the heavy and low vapor pressure impurities at low level.As indium has low melting point and high boiling point,it is suitable for refining by vacuum distillation.First,saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation,which could approximately predict the temperature and pressure during vacuum distillation process.Second,the activity coefficients for In–Cd,In–Zn,In–Pb,In–Tl at 1373 K,and In–Sn at 1573 K were acquired by means of molecular interaction on volume model.Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients.These diagrams could estimate the compositions of products in each process during the refinement of crude indium.Finally,1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out,and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.展开更多
The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, hea...The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, heat preservation time and material thickness, were investigated under laboratory conditions. The experimental results indicate that almost all of lead and bismuth can be separated from silver-contained multicomponent alloy at 1 223 K for 45 min when the chamber pressure maintains at 10-25 Pa. Silver can be easily enriched in the residue and its mass fraction increases from 3.6% to 27.8% when the distillation temperature is between 1 133 K and 1 373 K. Due to the forming ofintermetallic compounds Cu2Sb, Cul0Sb3 and Ag3Sb, the antimony could not be evaporated completely during the vacuum distillation. EDS analysis indicates that the condensate has a columnar crystal structure.展开更多
The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in ...The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.展开更多
High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS)...High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS) was applied for the analysis of input material and the distilled indium. The results indicate that high-volatile impurities namely Cd, Zn, T1 and Pb can be removed from the indium matrix at the low fraction stage of 1 223 K for 120 min; Low-volatile impurities such as Fe, Ni, Cu, Sn can be reduced at the high fraction stage of 1 323 K for 120 min. The separation coefficient ,8i and activity coefficient Yi of impurities are calculated according to the experiments to fill the inadequate data of the thermodynamics.展开更多
This paper summarizes the research results of vacuum distillation of Pb-Sb alloy and crude antimony.In our study,we have found the basic law which states that in Pb-Sb phase diagrams,the part which is rich in lead can...This paper summarizes the research results of vacuum distillation of Pb-Sb alloy and crude antimony.In our study,we have found the basic law which states that in Pb-Sb phase diagrams,the part which is rich in lead can be used to guide the purification of lead by distillation,while the part rich in antimony can be used to guide the purification of Sb.where the compositional point C is the azeotropic mixture.The technical experi-mental results at temperatures between 7OO-85OC are coincident with those of theorical study.The expanding experiment at the 100kg scale produced satisfactory results.展开更多
Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vac...Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.展开更多
In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1...In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1,2-dichloroethane(DCA). During the simulation, the distillation column and reactors were operated for separation and chlorination respectively under variable pressures and temperatures. It is interesting to note that VD-ACR processes producing pure TeCA or PCA can exhibit the similar configuration parameters after optimization, which enables the flexible production of TeCA and PCA with different molar ratios via changing operating parameters. The molar ratio of TeC A/PCA can be fine-tuned within the range of 0.9:0.1-0.1:0.9 through adjusting the amount of chlorine pumped into side reactors, giving rise to the increase of the heat duty of reboiler by five times. A pilot-scale experiment was then operated based-upon this VD-ACR process and the result matched well with the simulation. Therefore, the VD-ACR model presented in this study will be beneficial for the industrial-scale flexible production of TeCA and PCA from DCA.展开更多
The evaporation coefficients alpha(i) of impurity elements Al, Cu, Cr, Co, Fe, Ni, Si in liquid scandium metal of purity 99.9% were measured at 1550 degrees C and 6.7 x 10(-3) Pa. The separating coefficients beta(i) a...The evaporation coefficients alpha(i) of impurity elements Al, Cu, Cr, Co, Fe, Ni, Si in liquid scandium metal of purity 99.9% were measured at 1550 degrees C and 6.7 x 10(-3) Pa. The separating coefficients beta(i) and activity coefficients gamma(i)(o) of these impurity elements were calculated and the separation possibility between these impurity elements and Sc was discussed from thermodynamics. Then the new technology in preparation of high purity scandium metal was proposed and its purification mechanism was discussed.展开更多
The design features of 8 Mt/a atmospheric and vacuum distillation unit (Ⅲ) in Zhenhai Refiningand Chemical Company are presented and various process schemes are compared. Production practice hasproved that the main p...The design features of 8 Mt/a atmospheric and vacuum distillation unit (Ⅲ) in Zhenhai Refiningand Chemical Company are presented and various process schemes are compared. Production practice hasproved that the main process design is advanced and reasonable and the process parameters basicallyreached design requirements.展开更多
The expressions of heat of evaporation for metals at different temperatures were deduced from Clausius-Clapeyron equation and the total change of enthalpy.Those of Pb,Cd and Zn were calculated.Results showed that theo...The expressions of heat of evaporation for metals at different temperatures were deduced from Clausius-Clapeyron equation and the total change of enthalpy.Those of Pb,Cd and Zn were calculated.Results showed that theoretic energy consumption decreased a little with the decrease of e-vaporation temperature,which can be used to determine the energy demand while these metals are distilled at different process temperatures and pressures.展开更多
The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activitie...The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activities, which indicates that this model is of stability and reliability because the MIVM has a good physical basis. The vapor-liquid phase equilibrium of Sn-Zn alloy system in vacuum distillation was calculated as a function of the activity coefficient. The results show that the content of Sn in vapor phase is 4.2x 10-7 (mass fraction) while in liquid phase it is 90% (mass fraction) at 1 073 K, and the content of Sn in vapor phase increases with increasing the melt temperature and content of Sn in liquid phase. Vacuum distillation experiments were carried out on Sn-Zn alloy for the proper interpretation of the results of the MIVM in the temperature range of 973-1 273 K under pressures of 15-200 Pa. The experimental results show that the content of Sn in vapor phase is 5x 10 6 (mass fraction) while in liquid phase it is 90% (mass fraction) under the operational condition of 1 073 K, 100 rain and 15 Pa. The experimental results are in good agreement with the predicted values of the MIVM for Zn-Sn binary alloy system.展开更多
High concentration alkaline silica sol has been prepared by the method of vacuum distillation, which shows that the stable and high concentration silica sol can be obtained under conditions as follows: 70℃, vacuum d...High concentration alkaline silica sol has been prepared by the method of vacuum distillation, which shows that the stable and high concentration silica sol can be obtained under conditions as follows: 70℃, vacuum degree of 0.095Mpa and dispersant of SDS. The experimental results show that the sol particles size decreases with mass concentration first and then increase, sol viscosity increases with mass concentration during the concentrating process. The TEM method was used to study the dispersion behavior of sol particles, its result showed that sol particles dispersed more uniformly after concentrating process than before concentrating distinctly. It could be concluded that the disperse degree of alkaline silica sol could be increased by addition of right dispersant. The dispersion mechanism of dispersant in alkaline silica sol was also discussed.展开更多
In this paper, a novel approach for highly efficient purification of cadmium by vacuum distillation was reported. During the cadmium vacuum distillation, a small quantity of cadmium oxide film, produced under lower v...In this paper, a novel approach for highly efficient purification of cadmium by vacuum distillation was reported. During the cadmium vacuum distillation, a small quantity of cadmium oxide film, produced under lower vacuum, was intentionally induced into the evaporator. and the presence of cadmium oxide changed the behavior of impurities. Meantime, a thermodynamic model of the process, which described the phase composition in the evaporator and condenser during evaporation of cadmium, was established. The model was used to classify the impurities according to their behavior in the purification process. On the base of the model, the purification of cadmium by one-stage and two-stage distillation and the validity of the model were also discussed.展开更多
The metallurgical sewage has very complex component and a significant environmental perniciousness and needs high treatment costs. In addition, too much low-temperature waste heat is emitted owing to the lack of suita...The metallurgical sewage has very complex component and a significant environmental perniciousness and needs high treatment costs. In addition, too much low-temperature waste heat is emitted owing to the lack of suitable users. Considering these concerns, a low-temperature-driven pretreatment method via vacuum distillation was proposed to treat the sewage from the metallurgical production. It uses the sensible heat carried by low-temperature exhausted gases to drive the distillation of sewage. The distilled water can be reused into the process as new water supply, while the enriched wastewater is discharged into the sewage treatment center for subsequent treatment. Converter dust removal sewage was chosen to perform an experimental observation. The variations of chemical oxygen demand, ammonia nitrogen, suspended solids, electrical conductivity, and pH of the condensate under different vacuum degrees and evaporation rates were mainly investigated. It can be found that the quality of the condensate gets better under certain conditions, which validates the feasibility of the proposed approach. Furthermore, by comprehensively analyzing the water quality indices and their influencing factors, the optimal vacuum degree was suggested to be controlled between 0.07 and 0.09 MPa, and the best evaporation rate was between 40 and 60%.展开更多
Palm fatty acid distillate(PFAD),a by-product of refining process of crude palm oil can be used as a potential feedstock for biodiesel production.However,the application of palm oil-based biodiesel is often hinder by ...Palm fatty acid distillate(PFAD),a by-product of refining process of crude palm oil can be used as a potential feedstock for biodiesel production.However,the application of palm oil-based biodiesel is often hinder by its poor cold flow properties(CFP).Biodiesel fuel with poor CFP may crystallize and result in clogging of fuel lines,filters and injectors that cause engine operability problems.For that,a vacuum distillation method was designed and its feasibility and efficiency in improving the CFP was examined.A total of 13.60wt%of total saturated fatty acid methyl esters were successfully removed from the PFAD biodiesel,resulting in the improvement of the cloud point(CP),cold filter plugging point(CFPP)and pour point(PP)of PFAD biodiesel from 20℃,19℃,and 15℃to 13℃,11℃,and 9℃,respectively.It is remarkable that the improved CFPP satisfied the requirements for grade C summer biodiesel for temperate climates in EN 14212 standard.Additionally,Sarin(U FAME)empirical correlation was evaluated and it was found to have a good prediction of CFP for PFAD biodiesel,with lower than 2℃deviation.展开更多
The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also st...The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also studied to devise methods that enabled the operation of VMD setup in a stable condition as well as to increase the membrane-operating life The results indicated that HCl separation with RE by VMD was possible, and the recovery ratio of 80% could be achieved by batch VMD. In continuous VMD, when the temperature of circular solutions, circular rate, and downstream pressure was 62-63℃, 5.4 cm/s, and 9.33 kPa, respectively, the HCl concentration in circular solutions and the processing capacity per membrane area were obtained. The mathematical results were in accordance with the experimental ones.展开更多
基金supported by the Korea Evaluation Institute of Industrial Technology funded by the Korean Ministry of Industry in Korea (Project No.:20000970, 20–9805)Basic Research Project (22–3803) of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science and ICT of Korea。
文摘A green and effective electrolytic process was developed to produce high-purity Mg metal using primary and secondary resources containing Mg O as a feedstock. The electrolysis of various Mg O resources was conducted using a Cu cathode in MgF2– LiF – KCl molten salt at 1043 K by applying an average current of 1.44 A for 12.5 h. The electrolysis of calcined North Korean magnesite and seawater Mg O clinker yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 89.6–92.4%. The electrolysis of oxidized Mg O-C refractory brick, aged ferronickel slag, and ferronickel slag yielded Mg alloys of MgCu2and(Cu) phases with current efficiencies of 59.3–92.3%. The vacuum distillation of Mg alloys obtained was conducted at 1300 K for 10 h to produce high-purity Mg metal. After vacuum distillation, Mg metal with a purity of above 99.994% was obtained. Therefore, this study demonstrates the feasibility of the production of high-purity Mg metal from various Mg O resources using a novel electrolytic process with a Cu cathode, followed by vacuum distillation.
基金supported by the National Research Councile of Science and Technology funded by the Korean Ministry of Industry in Korea(Project Nos.:1711173260,22-3803)the Korea Evaluation Institute of Industrial Technology funded by the Korean Ministry of Industry in Korea(Project Nos.:1415179713,20011157).
文摘In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated.
基金Project (2012CB722803) supported by the National Basic Research Program of ChinaProject (U1202271) supported by the National Natural Science Foundation of China
文摘A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.
基金Project(2012CB722803) supported by the National Basic Research Program of ChinaProject(2011FA008) supported by the Key Projectof Science and Technology Program of Yunnan Province,China
文摘Based on the molecular interaction volume model (MIVM), the activities of components of Pb Sn Sb ternary alloy were predicted. The vapo^liquid phase equilibrium of Pb-Sn-Sb alloy system was calculated using the activity coefficients of Pb Sn-Sb alloy system in the process of vacuum distillation. The calculated results show that the content of Sn in vapor phase increases with the increasing distillation temperature and content of Sn in liquid phase. However, the content of Sn in vapor phase is only 0.45% (mass fraction) while 97% in liquid phase at 1100 ℃, which shows that the separating effect is very well. Experimental investigations on the separation of Pb-Sn-Sb ternary alloy were carried out in the distillation temperature range of 1100-1300 ℃ under vacuum condition. It is found that the Sn content in vapor phase is 0.54% while 97% in liquid phase at 1100 ℃. Finally, the predicted data were compared with the experimental results showing good agreement with each other.
基金supported by the National Natural Science Foundation of China (No. 51104079 and U1202271)Fundamental Research of Yunnan Province (No. 2013FZ033)
文摘Vacuum distillation is a technique suitable for low boiling and melting point materials,to remove the heavy and low vapor pressure impurities at low level.As indium has low melting point and high boiling point,it is suitable for refining by vacuum distillation.First,saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation,which could approximately predict the temperature and pressure during vacuum distillation process.Second,the activity coefficients for In–Cd,In–Zn,In–Pb,In–Tl at 1373 K,and In–Sn at 1573 K were acquired by means of molecular interaction on volume model.Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients.These diagrams could estimate the compositions of products in each process during the refinement of crude indium.Finally,1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out,and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.
基金Project(2010CI009) supported by Science Foundation of Yunnan Province,ChinaProjects(U1202271) supported by the National Natural Science Foundation of China
文摘The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, heat preservation time and material thickness, were investigated under laboratory conditions. The experimental results indicate that almost all of lead and bismuth can be separated from silver-contained multicomponent alloy at 1 223 K for 45 min when the chamber pressure maintains at 10-25 Pa. Silver can be easily enriched in the residue and its mass fraction increases from 3.6% to 27.8% when the distillation temperature is between 1 133 K and 1 373 K. Due to the forming ofintermetallic compounds Cu2Sb, Cul0Sb3 and Ag3Sb, the antimony could not be evaporated completely during the vacuum distillation. EDS analysis indicates that the condensate has a columnar crystal structure.
基金Project(51504036) supported by the National Natural Science Foundation of ChinaProject(2012CBA01207) supported by the National Basic Research Program of ChinaProject(2011AA03A409) supported by the National High-Tech Research and Development Program of China
文摘The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.
基金Project(2009AA003) supported by Science and Technology Innovation Plan of Yunnan Province, China
文摘High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS) was applied for the analysis of input material and the distilled indium. The results indicate that high-volatile impurities namely Cd, Zn, T1 and Pb can be removed from the indium matrix at the low fraction stage of 1 223 K for 120 min; Low-volatile impurities such as Fe, Ni, Cu, Sn can be reduced at the high fraction stage of 1 323 K for 120 min. The separation coefficient ,8i and activity coefficient Yi of impurities are calculated according to the experiments to fill the inadequate data of the thermodynamics.
文摘This paper summarizes the research results of vacuum distillation of Pb-Sb alloy and crude antimony.In our study,we have found the basic law which states that in Pb-Sb phase diagrams,the part which is rich in lead can be used to guide the purification of lead by distillation,while the part rich in antimony can be used to guide the purification of Sb.where the compositional point C is the azeotropic mixture.The technical experi-mental results at temperatures between 7OO-85OC are coincident with those of theorical study.The expanding experiment at the 100kg scale produced satisfactory results.
基金funded by Shanghai Sailing Program (No.19YF1410800)National Natural Science Foundation of China(No. 21908056)。
文摘Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.
基金Supported by the National Natural Science Foundation of China(21276126,61203020)Prospective Joint Research Project of Jiangsu Province(BY2014005-02,BY2015005-02)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this paper, we developed a novel process integrating vacuum distillation with atmospheric chlorination reaction(VD-ACR) to realize the flexible production of tetrachloroethane(TeCA) and pentachloroethane(PCA)from 1,2-dichloroethane(DCA). During the simulation, the distillation column and reactors were operated for separation and chlorination respectively under variable pressures and temperatures. It is interesting to note that VD-ACR processes producing pure TeCA or PCA can exhibit the similar configuration parameters after optimization, which enables the flexible production of TeCA and PCA with different molar ratios via changing operating parameters. The molar ratio of TeC A/PCA can be fine-tuned within the range of 0.9:0.1-0.1:0.9 through adjusting the amount of chlorine pumped into side reactors, giving rise to the increase of the heat duty of reboiler by five times. A pilot-scale experiment was then operated based-upon this VD-ACR process and the result matched well with the simulation. Therefore, the VD-ACR model presented in this study will be beneficial for the industrial-scale flexible production of TeCA and PCA from DCA.
文摘The evaporation coefficients alpha(i) of impurity elements Al, Cu, Cr, Co, Fe, Ni, Si in liquid scandium metal of purity 99.9% were measured at 1550 degrees C and 6.7 x 10(-3) Pa. The separating coefficients beta(i) and activity coefficients gamma(i)(o) of these impurity elements were calculated and the separation possibility between these impurity elements and Sc was discussed from thermodynamics. Then the new technology in preparation of high purity scandium metal was proposed and its purification mechanism was discussed.
文摘The design features of 8 Mt/a atmospheric and vacuum distillation unit (Ⅲ) in Zhenhai Refiningand Chemical Company are presented and various process schemes are compared. Production practice hasproved that the main process design is advanced and reasonable and the process parameters basicallyreached design requirements.
文摘The expressions of heat of evaporation for metals at different temperatures were deduced from Clausius-Clapeyron equation and the total change of enthalpy.Those of Pb,Cd and Zn were calculated.Results showed that theoretic energy consumption decreased a little with the decrease of e-vaporation temperature,which can be used to determine the energy demand while these metals are distilled at different process temperatures and pressures.
基金Project(2012CB722803) supported by the Key Project of National Basic Research and Development Program of ChinaProject(2011FA008)supported by the Key Project of Science and Technology Program of Yunnan Province,China
文摘The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activities, which indicates that this model is of stability and reliability because the MIVM has a good physical basis. The vapor-liquid phase equilibrium of Sn-Zn alloy system in vacuum distillation was calculated as a function of the activity coefficient. The results show that the content of Sn in vapor phase is 4.2x 10-7 (mass fraction) while in liquid phase it is 90% (mass fraction) at 1 073 K, and the content of Sn in vapor phase increases with increasing the melt temperature and content of Sn in liquid phase. Vacuum distillation experiments were carried out on Sn-Zn alloy for the proper interpretation of the results of the MIVM in the temperature range of 973-1 273 K under pressures of 15-200 Pa. The experimental results show that the content of Sn in vapor phase is 5x 10 6 (mass fraction) while in liquid phase it is 90% (mass fraction) under the operational condition of 1 073 K, 100 rain and 15 Pa. The experimental results are in good agreement with the predicted values of the MIVM for Zn-Sn binary alloy system.
文摘High concentration alkaline silica sol has been prepared by the method of vacuum distillation, which shows that the stable and high concentration silica sol can be obtained under conditions as follows: 70℃, vacuum degree of 0.095Mpa and dispersant of SDS. The experimental results show that the sol particles size decreases with mass concentration first and then increase, sol viscosity increases with mass concentration during the concentrating process. The TEM method was used to study the dispersion behavior of sol particles, its result showed that sol particles dispersed more uniformly after concentrating process than before concentrating distinctly. It could be concluded that the disperse degree of alkaline silica sol could be increased by addition of right dispersant. The dispersion mechanism of dispersant in alkaline silica sol was also discussed.
基金the National Natural Science Foundation of Chinaand the Development Foundation of Shanghai MunicipalCommi-ssion of Education
文摘In this paper, a novel approach for highly efficient purification of cadmium by vacuum distillation was reported. During the cadmium vacuum distillation, a small quantity of cadmium oxide film, produced under lower vacuum, was intentionally induced into the evaporator. and the presence of cadmium oxide changed the behavior of impurities. Meantime, a thermodynamic model of the process, which described the phase composition in the evaporator and condenser during evaporation of cadmium, was established. The model was used to classify the impurities according to their behavior in the purification process. On the base of the model, the purification of cadmium by one-stage and two-stage distillation and the validity of the model were also discussed.
基金This work was sponsored by the National Natural Science Foundation of China (51734004, 21561122001), the China Scholarship Council (201702660037) and the Fundamental Research Funds for the China Central Universities (N162504011).
文摘The metallurgical sewage has very complex component and a significant environmental perniciousness and needs high treatment costs. In addition, too much low-temperature waste heat is emitted owing to the lack of suitable users. Considering these concerns, a low-temperature-driven pretreatment method via vacuum distillation was proposed to treat the sewage from the metallurgical production. It uses the sensible heat carried by low-temperature exhausted gases to drive the distillation of sewage. The distilled water can be reused into the process as new water supply, while the enriched wastewater is discharged into the sewage treatment center for subsequent treatment. Converter dust removal sewage was chosen to perform an experimental observation. The variations of chemical oxygen demand, ammonia nitrogen, suspended solids, electrical conductivity, and pH of the condensate under different vacuum degrees and evaporation rates were mainly investigated. It can be found that the quality of the condensate gets better under certain conditions, which validates the feasibility of the proposed approach. Furthermore, by comprehensively analyzing the water quality indices and their influencing factors, the optimal vacuum degree was suggested to be controlled between 0.07 and 0.09 MPa, and the best evaporation rate was between 40 and 60%.
基金supported by the Malaysian Ministry of Higher Education(No.FRGS/2/2014/TK06/CURTIN/02/1).
文摘Palm fatty acid distillate(PFAD),a by-product of refining process of crude palm oil can be used as a potential feedstock for biodiesel production.However,the application of palm oil-based biodiesel is often hinder by its poor cold flow properties(CFP).Biodiesel fuel with poor CFP may crystallize and result in clogging of fuel lines,filters and injectors that cause engine operability problems.For that,a vacuum distillation method was designed and its feasibility and efficiency in improving the CFP was examined.A total of 13.60wt%of total saturated fatty acid methyl esters were successfully removed from the PFAD biodiesel,resulting in the improvement of the cloud point(CP),cold filter plugging point(CFPP)and pour point(PP)of PFAD biodiesel from 20℃,19℃,and 15℃to 13℃,11℃,and 9℃,respectively.It is remarkable that the improved CFPP satisfied the requirements for grade C summer biodiesel for temperate climates in EN 14212 standard.Additionally,Sarin(U FAME)empirical correlation was evaluated and it was found to have a good prediction of CFP for PFAD biodiesel,with lower than 2℃deviation.
文摘The possibility of the recovery of hydrochloric acid from rare earth (RE) chloride solutions was first experimentally studied by batch vacuum membrane distillation (VMD). The recovery by continuous VMD was also studied to devise methods that enabled the operation of VMD setup in a stable condition as well as to increase the membrane-operating life The results indicated that HCl separation with RE by VMD was possible, and the recovery ratio of 80% could be achieved by batch VMD. In continuous VMD, when the temperature of circular solutions, circular rate, and downstream pressure was 62-63℃, 5.4 cm/s, and 9.33 kPa, respectively, the HCl concentration in circular solutions and the processing capacity per membrane area were obtained. The mathematical results were in accordance with the experimental ones.