Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implement...Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implementation of VIPs (vacuum insulation panels) in energy retrofit projects with rendered outer walls. Particular emphasis is put on reducing the thermal bridges due to mechanical fasteners and at the joints of the panels. These are evaluated through a parametric study of the impact of the thermal conductivity of the joints of the panels and the adjacent insulation layer as well as the material of the fasteners. The study is carried out with 3D FEM (finite element method) simulations software. Furthermore, the moisture conditions in the construction are studied. The dynamic moisture behavior of a wall construction is modeled with a two dimensional FEM model. The long term effects of vapor diffusion are investigated in terms of accumulated moisture and the risk of condensation. The results illustrate that vacuum insulation on the outside of the wall construction does not pose a moisture problem to the construction. The simulations are based on a draft of a new technical solution for the refurbishment of a building that is typical for the great Swedish building program of the 1970s.展开更多
A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measur...A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measuring gas pressure for VIPs,connecting an internal measurement gauge to external data acquisition units is problematic.The thin high barrier film covering the panel’s core usually prevents external electrical wires or mechanical devices being connected to the inside of the VIPs.To solve this problem,a micro capacitive pressure sensor with 0 to 250 Pa detection range is developed to detect the vacuum pressure.The sensor has high linearity and a sensitivity of 10 mV/Pa.Moreover,through the communication mode study,an ultrasound communications system for VIPs is designed.It shows from operation that this system is stable and reliable,and quick for communication speed.This new method enables the quality detection of VIPs to be completed within 1 second.The minimum detectable pressure of VIPs is below 1 Pa,and the measurement error can be controlled around 5%.展开更多
Thermal conductivity is an important quantity which represents the characteristic of Vacuum Insulation Panel’s(VIP’s)performance.Precise measurement of thermal conductivity provides better quality assurance for the ...Thermal conductivity is an important quantity which represents the characteristic of Vacuum Insulation Panel’s(VIP’s)performance.Precise measurement of thermal conductivity provides better quality assurance for the users.In this paper,we presented a novel embedded sensor method to measure the thermal conductivity of VIP.The proposed method evaluated the quality of VIP primarily based on the relationship between thermal conductivity and frequency characteristic of the output signal.In addition,we presented a new mean ridge regression extreme leaning machine(M-RRELM)model via improving extreme learning machine(ELM)by ridge regression to modify the relationship between the thermal conductivity and the output signal frequency characteristic.Experiments have shown that the M-RRELM model has higher precision compared with the traditional ELM.The proposed method achieved good performance and was faster than the well known methods.展开更多
文摘Vacuum insulation panels provide unprecedented possibilities for renovating the existing building stock in a manner that reduces the thermal losses through the building envelope. This study is focused on the implementation of VIPs (vacuum insulation panels) in energy retrofit projects with rendered outer walls. Particular emphasis is put on reducing the thermal bridges due to mechanical fasteners and at the joints of the panels. These are evaluated through a parametric study of the impact of the thermal conductivity of the joints of the panels and the adjacent insulation layer as well as the material of the fasteners. The study is carried out with 3D FEM (finite element method) simulations software. Furthermore, the moisture conditions in the construction are studied. The dynamic moisture behavior of a wall construction is modeled with a two dimensional FEM model. The long term effects of vapor diffusion are investigated in terms of accumulated moisture and the risk of condensation. The results illustrate that vacuum insulation on the outside of the wall construction does not pose a moisture problem to the construction. The simulations are based on a draft of a new technical solution for the refurbishment of a building that is typical for the great Swedish building program of the 1970s.
基金supported by the Science and Technology Projects of Fujian Province of China(Grant No.2010H6025)Science and Technology Projects of Xiamen City of China(Grant No.3502Z20103012)
文摘A new method of measuring gas pressure in vacuum insulation panels(VIPs)is reported in this study,which provides a fast and efficient quality control option of production.Although there are different methods of measuring gas pressure for VIPs,connecting an internal measurement gauge to external data acquisition units is problematic.The thin high barrier film covering the panel’s core usually prevents external electrical wires or mechanical devices being connected to the inside of the VIPs.To solve this problem,a micro capacitive pressure sensor with 0 to 250 Pa detection range is developed to detect the vacuum pressure.The sensor has high linearity and a sensitivity of 10 mV/Pa.Moreover,through the communication mode study,an ultrasound communications system for VIPs is designed.It shows from operation that this system is stable and reliable,and quick for communication speed.This new method enables the quality detection of VIPs to be completed within 1 second.The minimum detectable pressure of VIPs is below 1 Pa,and the measurement error can be controlled around 5%.
基金supported by the Science and Technology Projects of Fujian Province of China(Grant No.2010H6025)Science and Technology Projects of Xiamen City of China(Grant No.3502Z20103012)。
文摘Thermal conductivity is an important quantity which represents the characteristic of Vacuum Insulation Panel’s(VIP’s)performance.Precise measurement of thermal conductivity provides better quality assurance for the users.In this paper,we presented a novel embedded sensor method to measure the thermal conductivity of VIP.The proposed method evaluated the quality of VIP primarily based on the relationship between thermal conductivity and frequency characteristic of the output signal.In addition,we presented a new mean ridge regression extreme leaning machine(M-RRELM)model via improving extreme learning machine(ELM)by ridge regression to modify the relationship between the thermal conductivity and the output signal frequency characteristic.Experiments have shown that the M-RRELM model has higher precision compared with the traditional ELM.The proposed method achieved good performance and was faster than the well known methods.